Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;76(6):425-40.

Biomarkers of acute kidney injury in anesthesia, intensive care and major surgery: from the bench to clinical research to clinical practice

Affiliations
  • PMID: 20473256
Free article
Review

Biomarkers of acute kidney injury in anesthesia, intensive care and major surgery: from the bench to clinical research to clinical practice

E Moore et al. Minerva Anestesiol. 2010 Jun.
Free article

Abstract

Acute kidney injury (AKI) is common after major surgery and reportedly occurs in approximately 36% of ICU patients (RIFLE Risk/Injury/ Failure categories). It is associated with increased mortality, greater cost, and prolonged Intensive Care Unit (ICU) and hospital stay, despite attempts to develop therapies to prevent or attenuate AKI, which have had limited success. One major reason for this lack of success may be the result of delayed implementation due to the inability to detect AKI early. Traditional biomarkers of AKI (creatinine and urea) do not detect injury early enough. Thus, it is a priority to find reliable, early biomarkers that predict subsequent AKI. Innovative technologies such as functional genomics and proteomics have facilitated detection of several promising early biomarkers of AKI, such as neutrophil gelatinase-associated lipocalin (NGAL), cystatin C (CyC), liver-type fatty acid binding protein (L-FABP), interleukin-18 (IL-18), and kidney injury molecule-1 (KIM-1). These biomarkers have many potential applications during anesthesia and in the ICU. They can be used to evaluate the effect of new techniques and therapies on kidney function, as safety markers to monitor toxicity and as measures of treatment effect. For example, NGAL and cystatin C have been used in a safety monitoring trial of hydroxyethylstarch therapy and to detect AKI early, during or immediately after cardiac surgery. Clinical use beyond research settings is rapidly expanding.

PubMed Disclaimer

Comment in

LinkOut - more resources