Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 9;104(14):147602.
doi: 10.1103/PhysRevLett.104.147602. Epub 2010 Apr 9.

Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition

Affiliations

Persistence of ferroelectricity in BaTiO3 through the insulator-metal transition

T Kolodiazhnyi et al. Phys Rev Lett. .

Abstract

The ferroelectric BaTiO(3) is a band-gap insulator. Itinerant electrons can be introduced in this material by doping, for example, with oxygen vacancies. Above a critical electron concentration of n(c) approximately 1 x 10(20) cm(-3), BaTiO(3-delta) becomes metallic. This immediately raises a question: Does metallic BaTiO(3-delta) still retain ferroelectricity? One may expect itinerant electrons to destroy ferroelectricity as they screen the long-range Coulomb interactions. We followed the phase transitions in BaTiO(3-delta) as a function of n far into metallic phase. Although their stability range decreases with n, the low-symmetry phases in metallic BaTiO(3-delta) are still retained up to an estimated concentration of n* approximately 1.9 x 10(21) cm(-3). Moreover, it appears that the itinerant electrons partially stabilize the ferroelectric phases in metallic BaTiO(3-delta) by screening strong crystal field perturbations caused by oxygen vacancies.

PubMed Disclaimer