Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation
- PMID: 20482621
- DOI: 10.1111/j.1574-695X.2010.00682.x
Response of sessile cells to stress: from changes in gene expression to phenotypic adaptation
Abstract
A better understanding of the genotypic and phenotypic adaptation of sessile (biofilm-associated) microorganisms to various forms of stress is required in order to develop more effective antibiofilm strategies. This review presents an overview of what high-throughput transcriptomic analyses have taught us concerning the response of various clinically relevant microorganisms (including Pseudomonas aeruginosa, Burkholderia cenocepacia and Candida albicans) to treatment with antibiotics or disinfectants. In addition, several problems associated with identifying gene expression patterns in biofilms in general and their implications for identifying the response to stress are discussed (with a focus on heterogeneity in microbial biofilms and the role of small RNAs in microbial group behavior).
Similar articles
-
Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa.Biofouling. 2014;30(3):377-83. doi: 10.1080/08927014.2013.878333. Epub 2014 Feb 28. Biofouling. 2014. PMID: 24579656
-
Thymol inhibits Candida albicans biofilm formation and mature biofilm.Int J Antimicrob Agents. 2008 May;31(5):472-7. doi: 10.1016/j.ijantimicag.2007.12.013. Epub 2008 Mar 10. Int J Antimicrob Agents. 2008. PMID: 18329858
-
Techniques for antifungal susceptibility testing of Candida albicans biofilms.Methods Mol Med. 2005;118:71-9. doi: 10.1385/1-59259-943-5:071. Methods Mol Med. 2005. PMID: 15888936
-
Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms.FEMS Microbiol Lett. 2006 Aug;261(1):1-11. doi: 10.1111/j.1574-6968.2006.00280.x. FEMS Microbiol Lett. 2006. PMID: 16842351 Review.
-
Candida albicans biofilms: building a heterogeneous, drug-tolerant environment.Curr Opin Microbiol. 2013 Aug;16(4):398-403. doi: 10.1016/j.mib.2013.03.007. Epub 2013 Apr 6. Curr Opin Microbiol. 2013. PMID: 23566895 Review.
Cited by
-
The Human Cathelicidin Antimicrobial Peptide LL-37 as a Potential Treatment for Polymicrobial Infected Wounds.Front Immunol. 2013 Jul 3;4:143. doi: 10.3389/fimmu.2013.00143. eCollection 2013. Front Immunol. 2013. PMID: 23840194 Free PMC article.
-
Capture and Ex-Situ Analysis of Environmental Biofilms in Livestock Buildings.Microorganisms. 2021 Dec 21;10(1):2. doi: 10.3390/microorganisms10010002. Microorganisms. 2021. PMID: 35056451 Free PMC article.
-
BiofOmics: a Web platform for the systematic and standardized collection of high-throughput biofilm data.PLoS One. 2012;7(6):e39960. doi: 10.1371/journal.pone.0039960. Epub 2012 Jun 29. PLoS One. 2012. PMID: 22768184 Free PMC article.
-
Candida Biofilms: Development, Architecture, and Resistance.Microbiol Spectr. 2015 Aug;3(4):10.1128/microbiolspec.MB-0020-2015. doi: 10.1128/microbiolspec.MB-0020-2015. Microbiol Spectr. 2015. PMID: 26350306 Free PMC article. Review.
-
Mapping the Efficacy and Mode of Action of Ethylzingerone [4-(3-Ethoxy-4-Hydroxyphenyl) Butan-2-One] as an Active Agent against Burkholderia Bacteria.Appl Environ Microbiol. 2020 Sep 17;86(19):e01808-20. doi: 10.1128/AEM.01808-20. Print 2020 Sep 17. Appl Environ Microbiol. 2020. PMID: 32737133 Free PMC article.