Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts
- PMID: 20483316
- PMCID: PMC2872203
- DOI: 10.1016/j.bpj.2010.02.011
Mechanisms underlying the antifibrillatory action of hyperkalemia in Guinea pig hearts
Abstract
Hyperkalemia increases the organization of ventricular fibrillation (VF) and may also terminate it by mechanisms that remain unclear. We previously showed that the left-to-right heterogeneity of excitation and wave fragmentation present in fibrillating guinea pig hearts is mediated by chamber-specific outward conductance differences in the inward rectifier potassium current (I(K1)). We hypothesized that hyperkalemia-mediated depolarization of the reversal potential of I(K1) (E(K1)) would reduce excitability and thereby reduce VF excitation frequencies and left-to-right heterogeneity. We induced VF in Langendroff-perfused guinea pig hearts and increased the extracellular K(+) concentration ([K(+)](o)) from control (4 mM) to 7 mM (n = 5) or 10 mM (n = 7). Optical mapping enabled spatial characterization of excitation dominant frequencies (DFs) and wavebreaks, and identification of sustained rotors (>4 cycles). During VF, hyperkalemia reduced the maximum DF of the left ventricle (LV) from 31.5 +/- 4.7 Hz (control) to 23.0 +/- 4.7 Hz (7.0 mM) or 19.5 +/- 3.6 Hz (10.0 mM; p < 0.006), the left-to-right DF gradient from 14.7 +/- 3.6 Hz (control) to 4.4 +/- 1.3 Hz (7 mM) and 3.2 +/- 1.4 Hz (10 mM), the number of DF domains, and the incidence of wavebreak in the LV and interventricular regions. During 10 mM [K(+)](o), the rotation period and core area of sustained rotors in the LV increased, and VF often terminated. Two-dimensional computer simulations mimicking experimental VF predicted that clamping E(K1) to normokalemic values during simulated hyperkalemia prevented all of the hyperkalemia-induced VF changes. During hyperkalemia, despite the shortening of the action potential duration, depolarization of E(K1) increased refractoriness, leading to a slowing of VF, which effectively superseded the influence of I(K1) conductance differences on VF organization. This reduced the left-to-right excitation gradients and heterogeneous wavebreak formation. Overall, these results provide, to our knowledge, the first direct mechanistic insight into the organization and/or termination of VF by hyperkalemia.
Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures








Similar articles
-
Blockade of the inward rectifying potassium current terminates ventricular fibrillation in the guinea pig heart.J Cardiovasc Electrophysiol. 2003 Jun;14(6):621-31. doi: 10.1046/j.1540-8167.2003.03006.x. J Cardiovasc Electrophysiol. 2003. PMID: 12875424
-
Up-regulation of the inward rectifier K+ current (I K1) in the mouse heart accelerates and stabilizes rotors.J Physiol. 2007 Jan 1;578(Pt 1):315-26. doi: 10.1113/jphysiol.2006.121475. Epub 2006 Nov 9. J Physiol. 2007. PMID: 17095564 Free PMC article.
-
Rectification of the background potassium current: a determinant of rotor dynamics in ventricular fibrillation.Circ Res. 2001 Dec 7;89(12):1216-23. doi: 10.1161/hh2401.100818. Circ Res. 2001. PMID: 11739288
-
The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis.Heart Rhythm. 2005 Mar;2(3):316-24. doi: 10.1016/j.hrthm.2004.11.012. Heart Rhythm. 2005. PMID: 15851327 Review.
-
Molecular mechanisms and global dynamics of fibrillation: an integrative approach to the underlying basis of vortex-like reentry.J Theor Biol. 2004 Oct 21;230(4):475-87. doi: 10.1016/j.jtbi.2004.02.024. J Theor Biol. 2004. PMID: 15363670 Review.
Cited by
-
Heart Rate and Extracellular Sodium and Potassium Modulation of Gap Junction Mediated Conduction in Guinea Pigs.Front Physiol. 2016 Feb 2;7:16. doi: 10.3389/fphys.2016.00016. eCollection 2016. Front Physiol. 2016. PMID: 26869934 Free PMC article.
-
Cardioplegic arrest as pharmacological defibrillation; A novel approach for refractory ventricular fibrillation.Ann Card Anaesth. 2020 Oct-Dec;23(4):541-542. doi: 10.4103/aca.ACA_6_19. Ann Card Anaesth. 2020. PMID: 33109826 Free PMC article. No abstract available.
-
Rotors and the dynamics of cardiac fibrillation.Circ Res. 2013 Mar 1;112(5):849-62. doi: 10.1161/CIRCRESAHA.111.300158. Circ Res. 2013. PMID: 23449547 Free PMC article. Review.
-
The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue.Am J Physiol Heart Circ Physiol. 2021 Feb 1;320(2):H826-H837. doi: 10.1152/ajpheart.00608.2020. Epub 2021 Jan 1. Am J Physiol Heart Circ Physiol. 2021. PMID: 33385322 Free PMC article.
-
Sex differences in cardiac dynamics during myocardial ischemia using a single cell approach.Sci Rep. 2025 Mar 17;15(1):9153. doi: 10.1038/s41598-025-94055-5. Sci Rep. 2025. PMID: 40097687 Free PMC article.
References
-
- Gettes L.S. Electrolyte abnormalities underlying lethal and ventricular arrhythmias. Circulation. 1992;85(1, Suppl):I70–I76. - PubMed
-
- Pitt B., Bakris G., EPHESUS Investigators Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) Circulation. 2008;118:1643–1650. - PubMed
-
- Janse M.J., Wit A.L. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev. 1989;69:1049–1169. - PubMed
-
- Zipes D.P., Wellens H.J. Sudden cardiac death. Circulation. 1998;98:2334–2351. - PubMed
-
- Paterson D.J. Antiarrhythmic mechanisms during exercise. J. Appl. Physiol. 1996;80:1853–1862. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous