Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;51(6):921-8.
doi: 10.2967/jnumed.109.071571. Epub 2010 May 19.

Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction

Affiliations
Free article

Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction

Johannes Zeintl et al. J Nucl Med. 2010 Jun.
Free article

Abstract

We present a calibration method of a clinical SPECT/CT device for quantitative (99m)Tc SPECT. We use a commercially available reconstruction package including ordered-subset expectation maximization (OSEM) with depth-dependent 3-dimensional resolution recovery (OSEM-3D), CT-based attenuation correction, and scatter correction. We validated the method in phantom studies and applied it to images from patients injected with (99m)Tc-diphosponate.

Methods: The following 3 steps were performed to derive absolute quantitative values from SPECT reconstructed images. In step 1, we used simulations to characterize the SPECT/CT system and derive emission recovery values for various imaging parameter settings. We simulated spheres of varying diameters and focused on the dependencies of activity estimation errors on structure size and position, pixel size, count density, and reconstruction parameters. In step 2, we cross-calibrated our clinical SPECT/CT system with the well counter using a large cylinder phantom. This step provided the mapping from image counts to kBq/mL. And in step 3, correction factors from steps 1 and 2 were applied to reconstructed images. We used a cylinder phantom with variable-sized spheres for verification of the method. For in vivo validation, SPECT/CT datasets from 16 patients undergoing (99m)Tc-diphosponate SPECT/CT examinations of the pelvis including the bladder were acquired. The radioactivity concentration in the patients' urine served as the gold standard. Mean quantitative accuracy and SEs were calculated.

Results: In the phantom experiments, the mean accuracy in quantifying radioactivity concentration in absolute terms was within 3.6% (SE, 8.0%), with a 95% confidence interval between -19.4% and +12.2%. In the patient studies, the mean accuracy was within 1.1% (SE, 8.4%), with a 95% confidence interval between -15.4% and +17.5%.

Conclusion: Current commercially available SPECT/CT technology using OSEM-3D reconstruction, scatter correction, and CT-based attenuation correction allows quantification of (99m)Tc radioactivity concentration in absolute terms within 3.6% in phantoms and 1.1% in patients with a focus on the bladder. This opens up the opportunity of SPECT quantitation entering the routine clinical arena. Still, the imprecision caused by unavoidable measurement errors is a dominant factor for absolute quantitation in a clinical setup.

PubMed Disclaimer

Similar articles

Cited by