Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 1;123(Pt 11):1940-7.
doi: 10.1242/jcs.063719.

Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells

Affiliations

Non-conducting function of the Kv2.1 channel enables it to recruit vesicles for release in neuroendocrine and nerve cells

Lori Feinshreiber et al. J Cell Sci. .

Abstract

Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine cells, but also occurs in the somatic-vesicle release from dorsal-root-ganglion neurons and is mediated by direct association of Kv2.1 with syntaxin. We further show in adrenal chromaffin cells that facilitation induced by both wild-type and non-conducting mutant Kv2.1 channels in response to long stimulation persists during successive stimulation, and can be attributed to an increased number of exocytotic events and not to changes in single-spike kinetics. Moreover, rigorous analysis of the pools of released vesicles reveals that Kv2.1 enhances the rate of vesicle recruitment during stimulation with high Ca(2+), without affecting the size of the readily releasable vesicle pool. These findings place a voltage-gated K(+) channel among the syntaxin-binding proteins that directly regulate pre-fusion steps in exocytosis.

PubMed Disclaimer

Publication types

LinkOut - more resources