Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 20;465(7296):322-5.
doi: 10.1038/nature09056.

A faint type of supernova from a white dwarf with a helium-rich companion

Affiliations
Free article

A faint type of supernova from a white dwarf with a helium-rich companion

H B Perets et al. Nature. .
Free article

Abstract

Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

PubMed Disclaimer

Comment in

References

    1. Science. 2007 Feb 9;315(5813):825-8 - PubMed
    1. Nature. 2009 Jun 4;459(7247):674-7 - PubMed
    1. Nature. 2010 May 20;465(7296):326-8 - PubMed

Publication types

LinkOut - more resources