Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;75(4):1007-20.
doi: 10.1111/j.1365-2958.2009.07037.x.

FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris

Affiliations
Free article

FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris

Federico E Rey et al. Mol Microbiol. 2010 Feb.
Free article

Abstract

Purple non-sulphur phototrophic bacteria (PNSB) are excellent models for analysing the co-ordination of major metabolisms, including oxidative phosphorylation, photophosphorylation, carbon dioxide fixation and nitrogen fixation. In species studied to date, a two-component system called RegBA controls these functions and it has been thought that this redox sensing regulatory system is essential for co-ordinating electron flow and cannot be easily replaced. Here we show that this is not the case for all PNSB and that the oxygen-sensing FixLJ-K system, initially described in rhizobia, controls microaerobic respiration, photophosphorylation and other major metabolic traits in Rhodopseudomonas palustris. A R. palustris fixK mutant grew normally aerobically but was impaired in microaerobic growth. It was also severely impaired in photosynthetic growth. Transcriptome analyses indicated that FixK positively regulates haem and bacteriochlorophyll biosynthesis, cbb3 oxidase and NADH dehydrogenase genes, as well as genes for autotrophy and aromatic compound degradation. Purified FixK interacted with the promoters of a bacteriochlorophyll biosynthesis operon, a bacteriophytochrome-histidine kinase gene and the fnr-type regulatory gene, aadR. A FixK-AadR hierarchy mediates the transition from microaerobic to anaerobic growth. These results underscore that physiologically similar bacteria can use very different regulatory strategies to control common major metabolisms.

PubMed Disclaimer

Publication types