Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 21:10:221.
doi: 10.1186/1471-2407-10-221.

Association between EGF +61 G/A and glioma risk in a Chinese population

Affiliations

Association between EGF +61 G/A and glioma risk in a Chinese population

Shujie Wang et al. BMC Cancer. .

Abstract

Background: Epidermal growth factor (EGF) is critical in cancer process. EGF and EGF receptor (EGFR) interaction plays a pivotal role in cell proliferation, differentiation, and tumorigenesis of epithelial tissues. Variations of the EGF +61G/A (rs4444903) may lead to an alteration in EGF production and/or activity, which can result in individual susceptibility to brain glioma. The purpose of this study was to investigate the potential association between EGF +61G/A and brain glioma in a Chinese population.

Methods: In this study, we analyzed single nucleotide polymorphism of EGF +61G/A in 677 patients with glioma and 698 gender- and age-matched controls. Genotyping was performed by polymerase chain reaction-ligation detection reaction (PCR-LDR) method.

Results: The A allele (minor Allele) was 33.0% in cases and 27.3% in controls. The additive model was more powerful to reveal the association in our study than that of recessive and dominant model. Our data showed the genotype G/A and A/A was associated with increased risk for glioma (adjusted OR = 1.48, 95%CI: 1.17-1.87, p = 0.001 for G/A, adjusted OR = 1.81, 95%CI: 1.20-2.72, p = 0.005 for A/A, respectively), and for glioblastoma (adjusted OR = 1.51, 95%CI: 1.06-2.17, p = 0.024 and adjusted OR = 2.35, 95%CI: 1.34-4.15, p = 0.003, respectively). The A allele significantly increased glioma risk (OR = 1.31, 95%CI: 1.11-1.55, p = 0.001). The additive model (G/G vs G/A vs A/A) showed that both G/A and A/A genotype increased glioma risk (adjusted OR = 1.40, 95% CI: 1.17-1.66, p = 0.0002).G/A and A/A genotypes or EGF +61 A allele increased risk in both low and high WHO grade glioma. Non-smokers with G/A and A/A genotype showed increased glioma risk compared with G/G genotype (adjusted OR = 1.72, 95%CI: 1.29-2.30, p = 0.0002 and adjusted OR = 1.81, 95%CI: 1.10-2.99, p = 0.020, respectively). This association was not found in ever- or current-smokers.

Conclusions: Our study indicated that G/A and A/A genotypes or EGF +61 A allele were associated with higher glioma risk in Chinese. This is in contrast with previous studies which reported G allele as a risk factor of glioma in Caucasian. The role of EGF +61 A/G polymorphism in glioma susceptibility needs further investigation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109. doi: 10.1007/s00401-007-0243-4. - DOI - PMC - PubMed
    1. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME. Molecular targets of glioma invasion. Cell Mol Life Sci. 2007;64(4):458–478. doi: 10.1007/s00018-007-6342-5. - DOI - PMC - PubMed
    1. Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. J Neurosurg. 1998;88(1):1–10. doi: 10.3171/jns.1998.88.1.0001. - DOI - PubMed
    1. Mangiola A, Lama G, Giannitelli C, De Bonis P, Anile C, Lauriola L, La Torre G, Sabatino G, Maira G, Jhanwar-Uniyal M. Stem cell marker nestin and c-Jun NH2-terminal kinases in tumor and peritumor areas of glioblastoma multiforme: possible prognostic implications. Clin Cancer Res. 2007;13(23):6970–6977. doi: 10.1158/1078-0432.CCR-07-1229. - DOI - PubMed
    1. Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother. 2009;9(4):519–534. doi: 10.1586/ern.09.10. - DOI - PubMed

Publication types

MeSH terms

Substances