Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983;5(6):697-712.
doi: 10.1016/0197-0186(83)90095-5.

Synaptic vesicles from hog brain-their isolation and the coupling between synthesis and uptake of ?-aminobutyrate by glutamate decarboxylase

Affiliations

Synaptic vesicles from hog brain-their isolation and the coupling between synthesis and uptake of ?-aminobutyrate by glutamate decarboxylase

I Angel et al. Neurochem Int. 1983.

Abstract

Purified synaptic vesicles were isolated from hog cerebral cortex by a rapid procedure consisting of homogenization of cerebral cortex slices in iso-osmotic sucrose, differential centrifugation and sucrose density-gradient centrifugation. The purity of the vesicles was evaluated both biochemically and morphologically. The vesicles contained high amounts of ?-aminobutyrate (GABA) and acetylcholine at specific concentrations of 390 nmol/mg protein and 7.2 nmol/mg protein respectively. Glutamate decarboxylase, the enzyme which catalyses GABA formation, binds to the synaptic vesicles in a calcium-dependent manner. The percentage of glutamate decarboxylase bound to the vesicles increases from about 5% without calcium, reaching a plateau of about 60% at 4 mM Ca(2+). Magnesium in concentrations 0.2-10 mM has no significant effect on glutamate decarboxylase binding. Also in phospholipid vesicles (small unilamellar phosphatidylserine-phosphatidylcholine. 2:1 liposomes) Ca(2+), but not Mg(2+), induced the binding of glutamate decarboxylase, reaching a plateau of 50% at 2 mM Ca(2+). Both in synaptic vesicles and in phospholipid vesicles the calcium-dependent glutamate decarboxylase binding seems to be specific, and not caused by unspecific association of proteins, since the specific binding (bound enzyme activity/mg bound protein) increases 3-fold from 0 to 4 mM Ca(2+). The functional role of this binding was studied in GAD containing vesicles by measuring the relationship between the accumulation of [(3)H]GABA, newly synthetized from [(3)H]glutamate, and the uptake of added [(14)C]GABA. No significant uptake of [(14)C]GABA was found under the experimental conditions used, whereas large amounts of [(3)H]GABA were found within the vesicles. It appears that the [(3)H]GABA accumulation process is functionally linked to [(3)H]GABA synthesis and is mediated by the membrane-bound glutamate decarboxylase. This synthesis-coupled uptake of GABA into synaptic vesicles possibly serves to bring about a plasticity effect in previously stimulated GABAergic nerve endings.

PubMed Disclaimer

LinkOut - more resources