Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;30(4):327-35.
doi: 10.1177/156482650903000403.

Iron in vitro bioavailability and iodine storage stability in double-fortified salt

Affiliations

Iron in vitro bioavailability and iodine storage stability in double-fortified salt

Yao Olive Li et al. Food Nutr Bull. 2009 Dec.

Abstract

Background: Ferrous fumarate is useful in iron fortification because of its high bioavailability, mild taste, and relatively low cost. A ferrous fumarate premix for incorporation into salt has been developed by agglomerating ferrous fumarate with appropriate binder materials into salt-size particles followed by microencapsulation.

Objective: The bioavailability of iron is critical for the usefulness of double-fortified salt. This study examined the in vitro bioavailability of various iron forms in double-fortified salt and microencapsulated ferrous fumarate premixes prepared by various techniques in an effort to identify key processing factors affecting iron bioavailability.

Methods: Iron in vitro bioavailability was approximated through the rate of dissolution of iron in 0.1 N HCl, which closely approximates the acid in gastric juice. Iron in vivo bioavailability was tested using the hemoglobin repletion assay in rats.

Results: The materials and techniques used in microencapsulating ferrous fumarate had little effect on iron in vitro bioavailability: more than 90% of iron in the premixes was released during 2 hours of digestion in the simulated gastric fluid. By incorporating titanium dioxide in the coating materials, the dark reddish-brown color of ferrous fumarate was effectively masked, resulting in acceptable sensory qualities, while maintaining the stability of iodine in the salt. Iron in vivo tests in rats have confirmed that the ferrous fumarate microencapsulated in a lipid is highly bioavailable, with a bioavailability of 95% relative to ferrous sulfate.

Conclusions: These findings were corroborated by field tests in southern India which demonstrated that double-fortified salt containing microencapsulated ferrous fumarate was effective in reducing the prevalence of iron-deficiency anemia and iodine-deficiency disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources