Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;9(2):117-35.
doi: 10.1111/j.1467-7652.2010.00532.x.

Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure

Affiliations
Free article

Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure

Rachel A Burton et al. Plant Biotechnol J. 2011 Feb.
Free article

Abstract

Cell walls in commercially important cereals and grasses are characterized by the presence of (1,3;1,4)-β-d-glucans. These polysaccharides are beneficial constituents of human diets, where they can reduce the risk of hypercholesterolemia, type II diabetes, obesity and colorectal cancer. The biosynthesis of cell wall (1,3;1,4)-β-d-glucans in the Poaceae is mediated, in part at least, by the cellulose synthase-like CslF family of genes. Over-expression of the barley CslF6 gene under the control of an endosperm-specific oat globulin promoter results in increases of more than 80% in (1,3;1,4)-β-d-glucan content in grain of transgenic barley. Analyses of (1,3;1,4)-β-d-glucan fine structure indicate that individual CslF enzymes might direct the synthesis of (1,3;1,4)-β-d-glucans with different structures. When expression of the CslF6 transgene is driven by the Pro35S promoter, the transgenic lines have up to sixfold higher levels of (1,3;1,4)-β-d-glucan in leaves, but similar levels as controls in the grain. Some transgenic lines of Pro35S:CslF4 also show increased levels of (1,3;1,4)-β-d-glucans in grain, but not in leaves. Thus, the effects of CslF genes on (1,3;1,4)-β-d-glucan levels are dependent not only on the promoter used, but also on the specific member of the CslF gene family that is inserted into the transgenic barley lines. Altering (1,3;1,4)-β-d-glucan levels in grain and vegetative tissues will have potential applications in human health, where (1,3;1,4)-β-d-glucans contribute to dietary fibre, and in tailoring the composition of biomass cell walls for the production of bioethanol from cereal crop residues and grasses.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources