Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;14(2):220.
doi: 10.1186/cc8926. Epub 2010 Apr 30.

Bench-to-bedside review: carbon dioxide

Affiliations
Review

Bench-to-bedside review: carbon dioxide

Gerard Curley et al. Crit Care. 2010.

Abstract

Carbon dioxide is a waste product of aerobic cellular respiration in all aerobic life forms. PaCO2 represents the balance between the carbon dioxide produced and that eliminated. Hypocapnia remains a common - and generally underappreciated - component of many disease states, including early asthma, high-altitude pulmonary edema, and acute lung injury. Induction of hypocapnia remains a common, if controversial, practice in both adults and children with acute brain injury. In contrast, hypercapnia has traditionally been avoided in order to keep parameters normal. More recently, advances in our understanding of the role of excessive tidal volume has prompted clinicians to use ventilation strategies that result in hypercapnia. Consequently, hypercapnia has become increasingly prevalent in the critically ill patient. Hypercapnia may play a beneficial role in the pathogenesis of inflammation and tissue injury, but may hinder the host response to sepsis and reduce repair. In contrast, hypocapnia may be a pathogenic entity in the setting of critical illness. The present paper reviews the current clinical status of low and high PaCO2 in the critically ill patient, discusses the insights gained to date from studies of carbon dioxide, identifies key concerns regarding hypocapnia and hypercapnia, and considers the potential clinical implications for the management of patients with acute lung injury.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Radrizzani D, Iapichino G. Nutrition and lung function in the critically ill patient. Clin Nutr. 1998;17:7–10. - PubMed
    1. Marion DW, Spiegel TP. Changes in the management of severe traumatic brain injury: 1991-1997. Crit Care Med. 2000;28:16–18. - PubMed
    1. Drummond WH, Gegory GA, Heymann MA, Phibbs RA. The independent effects of hyperventilation, tolazoline, and dopamine on infants with persistent pulmonary hypertension. J Pediatr. 1981;98:603–611. - PubMed
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–1308. - PubMed
    1. Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med. 1994;22:1568–1578. - PubMed

Publication types