Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 1;88(1):196-204.
doi: 10.1093/cvr/cvq152. Epub 2010 May 24.

HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism

Affiliations

HIF-1 inhibition decreases systemic vascular remodelling diseases by promoting apoptosis through a hexokinase 2-dependent mechanism

Caroline M Lambert et al. Cardiovasc Res. .

Abstract

Aims: Vascular remodelling diseases are characterized by the presence of proliferative and apoptosis-resistant vascular smooth muscle cells (VSMC). There is evidence that pro-proliferative and anti-apoptotic states are characterized by metabolic remodelling (a glycolytic phenotype with hyperpolarized mitochondria) involving Akt pathway activation by circulating growth factors. Hypoxia-inducible factor-1 (HIF-1) is involved in different vascular diseases. Since this transcription factor is implicated in metabolic responses, we hypothesized that HIF-1 activity could be involved in vascular remodelling in response to arterial injury.

Methods and results: Our findings indicate that growth factors, such as platelet-derived growth factor (PDGF), activate the Akt pathway (measured by immunoblot) in human carotid artery VSMC. Activation of this pathway increased HIF-1 activation (measured by immunoblot), leading to increased glycolysis in VSMC. Expression and mitochondrial activity of hexokinase 2 (HXK2), a primary initiator of glycolysis, are increased during HIF-1 activation. The mitochondrial activity of HXK2 in VSMC led to the hyperpolarization of mitochondrial membrane potential (measured by tetramethylrhodamine methyl-ester perchlorate) and the suppression of apoptosis (measured by TUNEL assay and 3 activity), effects that are blocked by HIF-1 inhibition. Additionally, HIF-1 inhibition also decreased VSMC proliferation (proliferating cell nuclear antigen and Ki-67 assays). In vivo, we demonstrate that localized HIF-1 inhibition, using a dominant-negative HIF-1α adenoviral construct, prevented carotid artery post-injury remodelling in rats.

Conclusion: We propose that HIF-1 is centrally involved in carotid artery remodelling in response to arterial injury and that localized inhibition of HIF-1 may be a novel therapeutic strategy to prevent carotid stenosis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources