Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;16(22):2493-503.
doi: 10.2174/138161210791959818.

Targeting the p53 pathway of apoptosis

Affiliations
Review

Targeting the p53 pathway of apoptosis

Joana D Amaral et al. Curr Pharm Des. 2010.

Abstract

The tumor suppressor protein, p53 is regarded as a key player in tumor suppression, as it promotes growth arrest, apoptosis and cellular senescence, while also blocking angiogenesis. The plethora of mechanisms underlying the p53 efficient death response involves transcriptional activation or repression of target genes, as well as the recently identified microRNAs, and transcription-independent functions. Pathological conditions such as cancer, neurodegeneration, ischemia, cholestasis or atherosclerosis are all strongly associated with deregulated levels of apoptosis in which p53 dysfunction has a prominent role. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. In this regard, therapeutic strategies aimed at reactivation of p53 in tumors emerge as a promising approach for the treatment of cancer patients, as well as chemical inhibitors of p53 that may prove effective in suppressing disorders associated with widespread p53 activation. This review highlights recent developments of p53-induced apoptosis in human diseases. In addition, we will discuss controversies arising from the double-edge sword of targeting p53 in disease. Finally, ursodeoxycholic acid (UDCA), an endogenous bile acid used to treat cholestatic liver diseases, was recently described as a fine modulator of the complex control of p53 by Mdm-2. We will also review recent therapeutic strategies and clinical applications of targeted agents, and their progress in drug lead discovery, with particular emphasis on the potential use of UDCA.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances