Control of tumorigenesis and chemoresistance by the DEK oncogene
- PMID: 20501624
- PMCID: PMC2931273
- DOI: 10.1158/1078-0432.CCR-09-2330
Control of tumorigenesis and chemoresistance by the DEK oncogene
Abstract
Slight modifications of chromatin dynamics can translate into small- and large-scale changes in DNA replication and DNA repair. Similarly, promoter usage and accessibility are tightly dependent on chromatin architecture. Consequently, it is perhaps not surprising that factors controlling chromatin organization are frequently deregulated (directly or indirectly) in cancer cells. DEK is emerging as a novel class of DNA topology modulators that can be both targets and effectors of protumorigenic events. The locus containing DEK at chromosome 6p22.3 is amplified or reorganized in multiple cancer types. In addition, DEK can be subject to a variety of tumor-associated transcriptional and post-translational modifications. In turn, DEK can favor cell transformation, at least in part by inhibiting cell differentiation and premature senescence. More recently, DEK has also been linked to the resistance of malignant cells to apoptotic inducers. Interestingly, a fraction of DEK can also bind RNA and affect alternative splicing, further illustrating the pleiotropic roles that this protein may exert in cancer cells. Here we will summarize the current literature about the regulation and function(s) of DEK as a proto-oncogene. In addition, the translational relevance of DEK as a putative diagnostic marker and candidate for drug development will be discussed.
Copyright 2010 AACR.
Conflict of interest statement
No potential conflicts of interest were disclosed.
Figures
References
-
- Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem. 2001;276:26317–23. - PubMed
-
- Soekarman D, von Lindern M, Daenen S, et al. The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features. Blood. 1992;79:2990–7. - PubMed
-
- Waldmann T, Eckerich C, Baack M, Gruss C. The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem. 2002;277:24988–94. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous