Cellular and molecular mechanisms of bone remodeling
- PMID: 20501658
- PMCID: PMC2919071
- DOI: 10.1074/jbc.R109.041087
Cellular and molecular mechanisms of bone remodeling
Abstract
Physiological bone remodeling is a highly coordinated process responsible for bone resorption and formation and is necessary to repair damaged bone and to maintain mineral homeostasis. In addition to the traditional bone cells (osteoclasts, osteoblasts, and osteocytes) that are necessary for bone remodeling, several immune cells have also been implicated in bone disease. This minireview discusses physiological bone remodeling, outlining the traditional bone biology dogma in light of emerging osteoimmunology data. Specifically discussed in detail are the cellular and molecular mechanisms of bone remodeling, including events that orchestrate the five sequential phases of bone remodeling: activation, resorption, reversal, formation, and termination.
Figures

Similar articles
-
[Regulation of bone homeostasis by bone cells].Clin Calcium. 2013 Feb;23(2):218-28. Clin Calcium. 2013. PMID: 23354089 Review. Japanese.
-
Local communication on and within bone controls bone remodeling.Bone. 2009 Jun;44(6):1026-33. doi: 10.1016/j.bone.2009.03.671. Epub 2009 Apr 5. Bone. 2009. PMID: 19345750 Review.
-
Cellular communications in bone homeostasis and repair.Cell Mol Life Sci. 2010 Dec;67(23):4001-9. doi: 10.1007/s00018-010-0479-3. Epub 2010 Aug 8. Cell Mol Life Sci. 2010. PMID: 20694737 Free PMC article. Review.
-
Cellular and Molecular Aspects of Bone Remodeling.Front Oral Biol. 2016;18:9-16. doi: 10.1159/000351895. Epub 2015 Nov 24. Front Oral Biol. 2016. PMID: 26599113 Free PMC article. Review.
-
[Stress and cell communication between bone cells].Clin Calcium. 2013 Nov;23(11):1595-603. Clin Calcium. 2013. PMID: 24162599 Review. Japanese.
Cited by
-
A T Cell View of the Bone Marrow.Front Immunol. 2016 May 17;7:184. doi: 10.3389/fimmu.2016.00184. eCollection 2016. Front Immunol. 2016. PMID: 27242791 Free PMC article.
-
Porcine placenta hydrolysates regulate calcium disturbance in MC3T3-E1 osteoblastic cells.BMC Complement Altern Med. 2016 Jul 25;16:237. doi: 10.1186/s12906-016-1202-1. BMC Complement Altern Med. 2016. PMID: 27457075 Free PMC article.
-
TSH suppressive therapy and bone.Endocr Connect. 2020 Jul;9(7):R158-R172. doi: 10.1530/EC-20-0167. Endocr Connect. 2020. PMID: 32567550 Free PMC article. Review.
-
The Impact of Tick-Borne Diseases on the Bone.Microorganisms. 2021 Mar 23;9(3):663. doi: 10.3390/microorganisms9030663. Microorganisms. 2021. PMID: 33806785 Free PMC article. Review.
-
Innate Biomineralization.Int J Mol Sci. 2020 Jul 8;21(14):4820. doi: 10.3390/ijms21144820. Int J Mol Sci. 2020. PMID: 32650435 Free PMC article.
References
-
- Teitelbaum S. L., Ross F. P. (2003) Nat. Rev. Genet. 4, 638–649 - PubMed
-
- Lacey D. L., Timms E., Tan H. L., Kelley M. J., Dunstan C. R., Burgess T., Elliott R., Colombero A., Elliott G., Scully S., Hsu H., Sullivan J., Hawkins N., Davy E., Capparelli C., Eli A., Qian Y. X., Kaufman S., Sarosi I., Shalhoub V., Senaldi G., Guo J., Delaney J., Boyle W. J. (1998) Cell 93, 165–176 - PubMed
-
- Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. (1990) Nature 345, 442–444 - PubMed
-
- Kong Y. Y., Yoshida H., Sarosi I., Tan H. L., Timms E., Capparelli C., Morony S., Oliveira-dos-Santos A. J., Van G., Itie A., Khoo W., Wakeham A., Dunstan C. R., Lacey D. L., Mak T. W., Boyle W. J., Penninger J. M. (1999) Nature 397, 315–323 - PubMed
-
- Simonet W. S., Lacey D. L., Dunstan C. R., Kelley M., Chang M. S., Lüthy R., Nguyen H. Q., Wooden S., Bennett L., Boone T., Shimamoto G., DeRose M., Elliott R., Colombero A., Tan H. L., Trail G., Sullivan J., Davy E., Bucay N., Renshaw-Gegg L., Hughes T. M., Hill D., Pattison W., Campbell P., Sander S., Van G., Tarpley J., Derby P., Lee R., Boyle W. J. (1997) Cell 89, 309–319 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources