Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;19(6):1506-10.
doi: 10.1158/1055-9965.EPI-10-0211. Epub 2010 May 25.

Urinary biomarkers of oxidative status in a clinical model of oxidative assault

Affiliations

Urinary biomarkers of oxidative status in a clinical model of oxidative assault

Dora Il'yasova et al. Cancer Epidemiol Biomarkers Prev. 2010 Jun.

Abstract

Background: We used doxorubicin-based chemotherapy as a clinical model of oxidative assault in humans.

Methods: The study recruited newly diagnosed breast cancer patients (n = 23). Urine samples were collected immediately before (T0) and at 1 hour (T1) and 24 hours (T24) after i.v. administration of treatment. Measurements included allantoin and the isoprostanes iPF(2alpha)-III, iPF(2alpha)-VI, and 8,12-iso-iPF(2alpha)-VI along with the prostaglandin 2,3-dinor-iPF(2alpha)-III, a metabolite of iPF(2alpha)-III. All biomarkers were quantified using liquid chromatography-tandem mass spectrometry.

Results: In all subjects, the levels of the biomarkers increased at T1: allantoin by 22% (P = 0.06), iPF(2alpha)-III by 62% (P < 0.05), iPF(2alpha)-VI by 41% (P < 0.05), 8,12-iso-iPF(2alpha)-VI by 58% (P < 0.05), and 2,3-dinor-iPF(2alpha)-III by 52% (P < 0.05). At T24, the F2-isoprostanes returned to their baseline levels; the levels of allantoin continued to increase, although the T24-T0 difference was not statistically significant.

Conclusions: These results indicate that urinary F2-isoprostanes are valid biomarkers and allantoin is a promising biomarker of oxidative status in humans.

Impact: The levels of biomarkers change quickly in response to oxidative assault and can be used to monitor oxidative status in humans in response to treatments related either to generation of free radicals (chemotherapy and radiation therapy) or to antioxidants (inborn metabolic diseases and Down syndrome).

PubMed Disclaimer

Conflict of interest statement

Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed.

References

    1. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231–55. - PMC - PubMed
    1. Kadiiska MB, Gladen BC, Baird DD, et al. Biomarkers of oxidative stress study: are plasma antioxidants markers of CCl(4) poisoning? Free Radic Biol Med. 2000;28:838–45. - PubMed
    1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229. - PubMed
    1. Rajagopalan S, Politi PM, Sinha BK, Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res. 1988;48:4766–9. - PubMed
    1. Il'yasova D, Mixon G, Wang F, et al. Markers of oxidative status in a clinical model of oxidative assault: a pilot study in human blood following doxorubicin administration. Biomarkers. 2009;14:321–5. - PMC - PubMed

Publication types