Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;26(1):21-8.
doi: 10.1159/000315102. Epub 2010 May 18.

Ceramide in suicidal death of erythrocytes

Affiliations
Review

Ceramide in suicidal death of erythrocytes

Florian Lang et al. Cell Physiol Biochem. 2010.

Abstract

The suicidal death of erythrocytes or eryptosis is characterized by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling resulting in phosphatidylserine exposure at the cell surface. Eryptosis is stimulated in a wide variety of diseases including sepsis, haemolytic uremic syndrome, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency and Wilson's disease. Moreover, eryptosis is elicited by osmotic shock, oxidative stress, energy depletion as well as a wide variety of endogenous mediators and xenobiotics. Excessive eryptosis is observed in erythrocytes lacking the cGMP-dependent protein kinase type I (cGKI) or the AMP-activated protein kinase AMPK. Inhibitors of eryptosis include erythropoietin, nitric oxide NO, catecholamines and high concentrations of urea. Eryptosis-triggering diseases and chemicals are partially effective by stimulating the formation of ceramide, which in turn fosters cell membrane scrambling. Accordingly, ceramide-induced eryptosis participates in the pathophysiology of several diseases and contributes to the effects of a large number of xenobiotics. The mechanisms underlying ceramide formation in erythrocytes are, however, still ill defined. In case of osmotic cell shrinkage, ceramide formation is apparently due to activation of phospholipase 2, leading to formation of platelet activating factor PAF and PAF-dependent stimulation of ceramide formation, which possibly involves acid sphingomyelinase. Additional experiments are needed to conclusively define the ceramide-generating enzyme and the ceramide-dependent cellular events eventually leading to suicidal erythrocyte death.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources