Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;116(2):c81-8.
doi: 10.1159/000314656. Epub 2010 May 22.

The role of tubulointerstitial inflammation in the progression of chronic renal failure

Affiliations
Review

The role of tubulointerstitial inflammation in the progression of chronic renal failure

Bernardo Rodríguez-Iturbe et al. Nephron Clin Pract. 2010.

Abstract

There is compelling evidence that interstitial inflammation plays a central role in the loss of renal function in chronic renal disease. The combined effects of interstitial inflammation, oxidative stress and local angiotensin II activity result in the disruption of glomerulus-tubule continuity, the development of pathogenic hypoxia, the generation of myofibroblasts and fibrosis, and the impairment of the protective autoregulation of glomerular blood flow that leads to glomerulosclerosis. The association between proteinuria and progression of chronic kidney disease is firmly established. Proximal tubular cells (PTC) exposed to high concentration of proteins produce proinflammatory and profibrotic factors. The activation of nuclear factor κB and the signal transducer and activator of transcription results in the upregulation of a variety of cytokines and chemokines, overexpression of adhesion molecules and interstitial infiltration of inflammatory cells. Fibrosis is promoted by release of transforming growth factor β, which induces myofibroblast formation and collagen deposition. Finally, the participation of vitamin D3 deficiency in the development of tubulointerstitial fibrosis is reviewed. The molecule 1,25-(OH)(2)D(3) modulates PTC proliferation, suppresses fibroblast activation and matrix production, reduces epithelial mesenchymal transition and downregulates the genes of the renin-angiotensin system, which are critical steps in the development of a scarred kidney.

PubMed Disclaimer

MeSH terms

LinkOut - more resources