Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;62(6):403-13.
doi: 10.1002/iub.336.

Impact of selected inborn errors of metabolism on prenatal and neonatal development

Affiliations
Free article
Review

Impact of selected inborn errors of metabolism on prenatal and neonatal development

Sabine Illsinger et al. IUBMB Life. 2010 Jun.
Free article

Abstract

In general, data regarding maturational processes of different metabolic pathways in the very vulnerable fetal and neonatal period are rare. This review is to substantiate the impact of selected inborn errors of metabolism on this critical period of life and their clinical manifestation. Significant adaptation of mitochondrial/energy-, carbohydrate-, lysosomal-, and amino acid-metabolism occurs during early prenatal and neonatal development. In utero, metabolic environment has an impact on the development of the fetus as well as fetal organ maturation. Defects of distinct metabolic pathways could therefore already be of significant relevance in utero and for clinical manifestations in the early fetal and neonatal period. Disturbances of these pathways may influence intrauterine growth and health. Production of a toxic intrauterine milieu, energy-deficiency, modification of membrane function, or disturbance of the normal intrauterine expression of genes may be responsible for fetal compromise and developmental disorders. Three categories of metabolic disorders will be discussed: the "intoxication type" (classical galactosemia, ornithine transcarbamylase deficiency, and "maternal phenylketonuria"), the "storage type" (Morbus Niemann Pick type C), and the "energy deficient type" (including long-chain fatty acid oxidation disorders, pyruvate dehydrogenase deficiency, and respiratory chain defects). For these disorders, the pathophysiology of early manifestation, special aspects regarding the prenatal and neonatal period, and diagnostic as well as therapeutic options are presented.

PubMed Disclaimer

LinkOut - more resources