Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Apr;65(4):891-8.
doi: 10.1152/jn.1991.65.4.891.

Laminar excitability cycles in neocortex

Affiliations

Laminar excitability cycles in neocortex

D S Barth et al. J Neurophysiol. 1991 Apr.

Abstract

1. Laminar field potentials produced by paired electrocortical stimuli were recorded with a linear microelectrode array inserted perpendicular to the surface of rat somatosensory cortex. Current source-density (CSD) distributions of the direct cortical response (DCR) were computed from the potential profiles. Principal component analysis (PCA) was used to estimate the time course of evoked transmembrane currents of putative pyramidal cell populations in the supragranular and infragranular layers. 2. Both supra- and infragranular cells displayed an initial period after the conditioning stimulus in which test stimuli produced subnormal evoked response amplitudes. This was followed in both layers by a long period of supernormal then subnormal responses and a second period of supernormal responses. 3. The main laminar difference encountered was a general shortening of all phases of the excitability cycle in the supragranular cells. 4. Excitability cycles in the supra- and infragranular layers closely followed the morphology of average evoked responses to the conditioning stimulus alone. These results and physiological support to the validity of lamina-specific evoked response waveforms derived from combined CSD and PCA analysis of extracellular potential measurements. 5. The relationship between evoked potential amplitude changes and cortical excitability is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources