Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;24(1):31-6.
doi: 10.3892/or_00000825.

Antitumor effects of inhibitors of nitric oxide synthase or cyclooxygenase-2 on human KB carcinoma cells overexpressing COX-2

Affiliations

Antitumor effects of inhibitors of nitric oxide synthase or cyclooxygenase-2 on human KB carcinoma cells overexpressing COX-2

Nao Ohtsu et al. Oncol Rep. 2010 Jul.

Abstract

Inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 are major inflammatory mediators. Nitric oxide (NO) produced by iNOS has been shown to have an important role in carcinogenesis. Recent studies have suggested that COX-2 expression also contributes to carcinogenesis, as well as tumor growth, invasion, and metastasis. COX-2 inhibitors such as celecoxib are widely recognized to have antitumor activity, but can cause adverse effects. We investigated possible relations between COX-2 and NO with the use of a human epidermoid carcinoma cell line, designated KB, in which overexpression of COX-2 protein was induced by gene transfer. We also assessed the possibility of using NOS inhibitor as an antitumor drug. We isolated a COX-2 transfected clone (KB/COX-2) and used a neomycin-transfected clone (KB/neo) as control. NG-nitro-L-arginine-methyl ester (L-NAME) was used as a NOS inhibitor, dihydrochloride (1400W) as an iNOS inhibitor, and celecoxib as a selective COX-2 inhibitor. All agents inhibited the cell growth of both clones to similar extents in a dose-dependent manner. Prostaglandin E2 (PGE2) production and COX-2 expression in KB/COX-2 were inhibited not only by celecoxib, but also by L-NAME and 1400W. The decreases in PGE2 production and COX-2 expression were most prominent with celecoxib and L-NAME. In vivo, L-NAME and celecoxib significantly inhibited the proliferation of KB/COX-2-xenografted tumors. Tumor weight was reduced by L-NAME (60.6% decrease), 1400W (38.0% decrease), and celecoxib (74.5% decrease) as compared with the control after 21 days of treatment. Immunohistochemically, xenografted tumors expressed COX-2, iNOS, and eNOS. Such expression was suppressed by treatment with L-NAME and celecoxib. These results suggest that L-NAME and celecoxib significantly inhibit the proliferation of murine squamous cell carcinoma in vivo. L-NAME as well as celecoxib might thus be useful for the design and development of new antitumor drugs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources