Yersinia enterocolitica promotes robust mucosal inflammatory T-cell immunity in murine neonates
- PMID: 20515925
- PMCID: PMC2916279
- DOI: 10.1128/IAI.01272-09
Yersinia enterocolitica promotes robust mucosal inflammatory T-cell immunity in murine neonates
Abstract
Mucosal immunity to gastrointestinal pathogens in early life has been studied only slightly. Recently, we developed an infection model in murine neonates using the gastroenteric pathogen Yersinia enterocolitica. Here, we report that oral infection of neonatal mice with low doses of virulent Y. enterocolitica leads to vigorous intestinal and systemic adaptive immunity. Y. enterocolitica infection promoted the development of anti-LcrV memory serum IgG1 and IgG2a responses of comparable affinity and magnitude to adult responses. Strikingly, neonatal mesenteric lymph node CD4(+) T cells produced Yersinia-specific gamma interferon (IFN-gamma) and interleukin-17A (IL-17A), exceeding adult levels. The robust T- and B-cell responses elicited in neonates exposed to Y. enterocolitica were associated with long-term protection against mucosal challenge with this pathogen. Using genetically deficient mice, we found that IFN-gamma and CD4(+) cells, but not B cells, are critical for protection of neonates during primary Y. enterocolitica infection. In contrast, adults infected with low bacterial doses did not require either cell population for protection. CD4-deficient neonatal mice adoptively transferred with CD4(+) cells from wild-type, IFN-gamma-deficient, or IL-17AF-deficient mice were equally protected from infection. These data demonstrate that inflammatory CD4(+) T cells are required for protection of neonatal mice and that this protection may not require CD4-derived IFN-gamma, IL-17A, or IL-17F. Overall, these studies support the idea that Y. enterocolitica promotes the development of highly inflammatory mucosal responses in neonates and that intestinal T-cell function may be a key immune component in protection from gastrointestinal pathogens in early life.
Figures








References
-
- Abolhassani, M., M. Lagranderie, I. Caminshi, F. Romain, A. M. Balazuc, M. C. Wagner, M. Tanguy, L. Fiette, I. Sobhani, G. Milon, and G. Marchal. 2006. Similar functional activity of dendritic cells recruited to the mesenteric lymph nodes of newborn and adult mice after the rectal delivery of Mycobacterium bovis BCG. Microbes Infect. 8:2341-2351. - PubMed
-
- Adkins, B., Y. Bu, E. Cepero, and R. Perez. 2000. Exclusive Th2 primary effector function in spleens but mixed Th1/Th2 function in lymph nodes of murine neonates. J. Immunol. 164:2347-2353. - PubMed
-
- Adkins, B., Y. Bu, and P. Guevara. 2001. The generation of Th memory in neonates versus adults: prolonged primary Th2 effector function and impaired development of Th1 memory effector function in murine neonates. J. Immunol. 166:918-925. - PubMed
-
- Adkins, B., Y. Bu, and P. Guevara. 2002. Murine neonatal CD4+ lymph node cells are highly deficient in the development of antigen-specific Th1 function in adoptive adult hosts. J. Immunol. 169:4998-5004. - PubMed
-
- Adkins, B., C. Leclerc, and S. Marshall-Clarke. 2004. Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4:553-564. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials