Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 3;465(7298):617-21.
doi: 10.1038/nature09016.

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

Affiliations

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J Mark Cock et al. Nature. .

Abstract

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.

PubMed Disclaimer

Similar articles

  • Ectocarpus: a model organism for the brown algae.
    Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L, Peters AF, Cock JM. Coelho SM, et al. Cold Spring Harb Protoc. 2012 Feb 1;2012(2):193-8. doi: 10.1101/pdb.emo065821. Cold Spring Harb Protoc. 2012. PMID: 22301644
  • microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus.
    Tarver JE, Cormier A, Pinzón N, Taylor RS, Carré W, Strittmatter M, Seitz H, Coelho SM, Cock JM. Tarver JE, et al. Nucleic Acids Res. 2015 Jul 27;43(13):6384-98. doi: 10.1093/nar/gkv578. Epub 2015 Jun 22. Nucleic Acids Res. 2015. PMID: 26101255 Free PMC article.
  • Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research.
    Charrier B, Coelho SM, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters AF, Cock JM. Charrier B, et al. New Phytol. 2008;177(2):319-332. doi: 10.1111/j.1469-8137.2007.02304.x. New Phytol. 2008. PMID: 18181960 Review.
  • Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems.
    Denoeud F, Godfroy O, Cruaud C, Heesch S, Nehr Z, Tadrent N, Couloux A, Brillet-Guéguen L, Delage L, Mckeown D, Motomura T, Sussfeld D, Fan X, Mazéas L, Terrapon N, Barrera-Redondo J, Petroll R, Reynes L, Choi SW, Jo J, Uthanumallian K, Bogaert K, Duc C, Ratchinski P, Lipinska A, Noel B, Murphy EA, Lohr M, Khatei A, Hamon-Giraud P, Vieira C, Avia K, Akerfors SS, Akita S, Badis Y, Barbeyron T, Belcour A, Berrabah W, Blanquart S, Bouguerba-Collin A, Bringloe T, Cattolico RA, Cormier A, Cruz de Carvalho H, Dallet R, De Clerck O, Debit A, Denis E, Destombe C, Dinatale E, Dittami S, Drula E, Faugeron S, Got J, Graf L, Groisillier A, Guillemin ML, Harms L, Hatchett WJ, Henrissat B, Hoarau G, Jollivet C, Jueterbock A, Kayal E, Knoll AH, Kogame K, Le Bars A, Leblanc C, Le Gall L, Ley R, Liu X, LoDuca ST, Lopez PJ, Lopez P, Manirakiza E, Massau K, Mauger S, Mest L, Michel G, Monteiro C, Nagasato C, Nègre D, Pelletier E, Phillips N, Potin P, Rensing SA, Rousselot E, Rousvoal S, Schroeder D, Scornet D, Siegel A, Tirichine L, Tonon T, Valentin K, Verbruggen H, Weinberger F, Wheeler G, Kawai H, Peters AF, Yoon HS, Hervé C, Ye N, Bapteste E, Valero M, Markov GV, Corre E, Coelho SM, Wincker P, A… See abstract for full author list ➔ Denoeud F, et al. Cell. 2024 Nov 27;187(24):6943-6965.e39. doi: 10.1016/j.cell.2024.10.049. Epub 2024 Nov 20. Cell. 2024. PMID: 39571576
  • Brown Algal Model Organisms.
    Coelho SM, Cock JM. Coelho SM, et al. Annu Rev Genet. 2020 Nov 23;54:71-92. doi: 10.1146/annurev-genet-030620-093031. Annu Rev Genet. 2020. PMID: 33228413 Review.

Cited by

References

    1. Virology. 2001 Aug 15;287(1):112-32 - PubMed
    1. Genome Biol. 2009;10(6):R66 - PubMed
    1. Trends Plant Sci. 2008 Sep;13(9):506-14 - PubMed
    1. Nat Cell Biol. 2009 Oct;11(10):1166-73 - PubMed
    1. J Biol Chem. 2003 Jun 27;278(26):23545-52 - PubMed

Publication types

Associated data