Front instabilities and invasiveness of simulated 3D avascular tumors
- PMID: 20520818
- PMCID: PMC2877086
- DOI: 10.1371/journal.pone.0010641
Front instabilities and invasiveness of simulated 3D avascular tumors
Abstract
We use the Glazier-Graner-Hogeweg model to simulate three-dimensional (3D), single-phenotype, avascular tumors growing in an homogeneous tissue matrix (TM) supplying a single limiting nutrient. We study the effects of two parameters on tumor morphology: a diffusion-limitation parameter defined as the ratio of the tumor-substrate consumption rate to the substrate-transport rate, and the tumor-TM surface tension. This initial model omits necrosis and oxidative/hypoxic metabolism effects, which can further influence tumor morphology, but our simplified model still shows significant parameter dependencies. The diffusion-limitation parameter determines whether the growing solid tumor develops a smooth (noninvasive) or fingered (invasive) interface, as in our earlier two-dimensional (2D) simulations. The sensitivity of 3D tumor morphology to tumor-TM surface tension increases with the size of the diffusion-limitation parameter, as in 2D. The 3D results are unexpectedly close to those in 2D. Our results therefore may justify using simpler 2D simulations of tumor growth, instead of more realistic but more computationally expensive 3D simulations. While geometrical artifacts mean that 2D sections of connected 3D tumors may be disconnected, the morphologies of 3D simulated tumors nevertheless correlate with the morphologies of their 2D sections, especially for low-surface-tension tumors, allowing the use of 2D sections to partially reconstruct medically-important 3D-tumor structures.
Conflict of interest statement
Figures













































Similar articles
-
Front instabilities and invasiveness of simulated avascular tumors.Bull Math Biol. 2009 Jul;71(5):1189-227. doi: 10.1007/s11538-009-9399-5. Epub 2009 Feb 21. Bull Math Biol. 2009. PMID: 19234746 Free PMC article.
-
3D multi-cell simulation of tumor growth and angiogenesis.PLoS One. 2009 Oct 16;4(10):e7190. doi: 10.1371/journal.pone.0007190. PLoS One. 2009. PMID: 19834621 Free PMC article.
-
Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method.J Theor Biol. 2008 Aug 7;253(3):524-43. doi: 10.1016/j.jtbi.2008.03.027. Epub 2008 Mar 28. J Theor Biol. 2008. PMID: 18485374 Free PMC article.
-
Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis.Bull Math Biol. 2020 Mar 12;82(3):39. doi: 10.1007/s11538-020-00716-z. Bull Math Biol. 2020. PMID: 32166456 Free PMC article.
-
Energy Metabolism Behavior and Response to Microenvironmental Factors of the Experimental Cancer Cell Models Differ from that of Actual Human Tumors.Mini Rev Med Chem. 2025;25(4):319-339. doi: 10.2174/0113895575322436240924101642. Mini Rev Med Chem. 2025. PMID: 39411957 Review.
Cited by
-
Integrative models of vascular remodeling during tumor growth.Wiley Interdiscip Rev Syst Biol Med. 2015 May-Jun;7(3):113-29. doi: 10.1002/wsbm.1295. Epub 2015 Mar 21. Wiley Interdiscip Rev Syst Biol Med. 2015. PMID: 25808551 Free PMC article. Review.
-
Stability and Roughness of Interfaces in Mechanically Regulated Tissues.Phys Rev Lett. 2018 Dec 7;121(23):238102. doi: 10.1103/PhysRevLett.121.238102. Phys Rev Lett. 2018. PMID: 30576196 Free PMC article.
-
An agent-based modelling framework to study growth mechanisms in EGFR-L858R mutant cell alveolar type II cells.R Soc Open Sci. 2024 Jul 17;11(7):240413. doi: 10.1098/rsos.240413. eCollection 2024 Jul. R Soc Open Sci. 2024. PMID: 39021764 Free PMC article.
-
Modeling of xenobiotic transport and metabolism in virtual hepatic lobule models.PLoS One. 2018 Sep 13;13(9):e0198060. doi: 10.1371/journal.pone.0198060. eCollection 2018. PLoS One. 2018. PMID: 30212461 Free PMC article.
-
Gell: A GPU-powered 3D hybrid simulator for large-scale multicellular system.PLoS One. 2023 Jul 18;18(7):e0288721. doi: 10.1371/journal.pone.0288721. eCollection 2023. PLoS One. 2023. PMID: 37463167 Free PMC article.
References
-
- Graner F, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett. 1992;69:2013. - PubMed
-
- Glazier JA, Graner F. Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E. 1993;47:2128. - PubMed
-
- Glazier JA, Balter A, Popławski NJ. Anderson ARA, Chaplain MAJ, Rejniak KA, editors. Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. Single-Cell-Based Models in Biology and Medicine, Birkhäuser-Verlag. 2007. 79
-
- Chaturvedi R, Izaguirre JA, Huang C, Cickovski T, Virtue P, et al. Multi-model simulations of chicken limb morphogenesis. Lect Notes Comput Sci. 2003;2659:39.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources