The antipsychotic potential of muscarinic allosteric modulation
- PMID: 20520852
- PMCID: PMC4780339
- DOI: 10.1358/dnp.2010.23.4.1416977
The antipsychotic potential of muscarinic allosteric modulation
Abstract
The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M(1)/M(4)-preferring orthosteric agonist. In a clinical trial with Alzheimer's patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M(1), M(4) or both M(1)/M(4)? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M(1) or M(4), have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M(1) or M(4) has antipsychotic potential through distinct, yet complimentary mechanisms.
Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.
Conflict of interest statement
DISCLOSURES
T.M. Bridges, E.P. LeBois, C.R. Hopkins, M.R. Wood and C.W. Lindsley state that they have no potential conflicts of interest to disclose.
Figures








Similar articles
-
Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists.CNS Drug Rev. 2003 Summer;9(2):159-86. doi: 10.1111/j.1527-3458.2003.tb00247.x. CNS Drug Rev. 2003. PMID: 12847557 Free PMC article. Review.
-
Classics in Chemical Neuroscience: Xanomeline.ACS Chem Neurosci. 2017 Mar 15;8(3):435-443. doi: 10.1021/acschemneuro.7b00001. Epub 2017 Feb 13. ACS Chem Neurosci. 2017. PMID: 28141924 Review.
-
In Vivo Pharmacological Comparison of TAK-071, a Positive Allosteric Modulator of Muscarinic M1 Receptor, and Xanomeline, an Agonist of Muscarinic M1/M4 Receptor, in Rodents.Neuroscience. 2019 Aug 21;414:60-76. doi: 10.1016/j.neuroscience.2019.07.003. Epub 2019 Jul 9. Neuroscience. 2019. PMID: 31299348
-
Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice.Schizophr Res. 2000 May 5;42(3):249-59. doi: 10.1016/s0920-9964(99)00138-3. Schizophr Res. 2000. PMID: 10785583
-
Muscarinic mechanisms in psychotic disorders.Handb Exp Pharmacol. 2012;(213):233-65. doi: 10.1007/978-3-642-25758-2_9. Handb Exp Pharmacol. 2012. PMID: 23027418 Review.
Cited by
-
Discovery of VU6008677: A Structurally Distinct Tricyclic M4 Positive Allosteric Modulator with Improved CYP450 Profile.ACS Med Chem Lett. 2024 Jul 3;15(8):1358-1366. doi: 10.1021/acsmedchemlett.4c00249. eCollection 2024 Aug 8. ACS Med Chem Lett. 2024. PMID: 39140069 Free PMC article.
-
Diverse Effects on M1 Signaling and Adverse Effect Liability within a Series of M1 Ago-PAMs.ACS Chem Neurosci. 2017 Apr 19;8(4):866-883. doi: 10.1021/acschemneuro.6b00429. Epub 2017 Jan 10. ACS Chem Neurosci. 2017. PMID: 28001356 Free PMC article.
-
Discovery of VU0467319: an M1 Positive Allosteric Modulator Candidate That Advanced into Clinical Trials.ACS Chem Neurosci. 2025 Jan 1;16(1):95-107. doi: 10.1021/acschemneuro.4c00769. Epub 2024 Dec 11. ACS Chem Neurosci. 2025. PMID: 39660766 Free PMC article. Clinical Trial.
-
Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology.Int J Mol Sci. 2012;13(2):2219-2238. doi: 10.3390/ijms13022219. Epub 2012 Feb 17. Int J Mol Sci. 2012. PMID: 22408449 Free PMC article. Review.
-
Development of novel M1 antagonist scaffolds through the continued optimization of the MLPCN probe ML012.Bioorg Med Chem Lett. 2012 Aug 1;22(15):5035-40. doi: 10.1016/j.bmcl.2012.06.018. Epub 2012 Jun 15. Bioorg Med Chem Lett. 2012. PMID: 22749871 Free PMC article.
References
-
- Andreasen NC. Schizophrenia: the fundamental questions. Brain Res Rev. 2000;31(2–3):106–112. - PubMed
-
- Karayiorgou M. Genetic aspects of schizophrenia. Clin Neurosci Res. 2001;1(1–2):158–163.
-
- Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Rev. 2000;31(2–3):288–294. - PubMed
-
- Jablensky A. Subtyping schizophrenia: Implications for genetic research. Mol Psychiatry. 2006;11(9):815–836. - PubMed
-
- Lindsley CW, Shipe WD, Wolkenberg SE, Theberge CR, Williams DL, Sur C, Kinney GG. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia. Curr Top Med Chem. 2006;6(8):771–785. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources