Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Aug;397(8):3281-304.
doi: 10.1007/s00216-010-3843-0. Epub 2010 Jun 3.

Bioanalytical tools for single-cell study of exocytosis

Affiliations
Review

Bioanalytical tools for single-cell study of exocytosis

Shencheng Ge et al. Anal Bioanal Chem. 2010 Aug.

Abstract

Regulated exocytosis is a fundamental biological process used to deliver chemical messengers for cell-cell communication via membrane fusion and content secretion. A plethora of cell types employ this chemical-based communication to achieve crucial functions in many biological systems. Neurons in the brain and platelets in the circulatory system are representative examples utilizing exocytosis for neurotransmission and blood clotting. Single-cell studies of regulated exocytosis in the past several decades have greatly expanded our knowledge of this critical process, from vesicle/granule transport and docking at the early stages of exocytosis to membrane fusion and to eventual chemical messenger secretion. Herein, four main approaches that have been widely used to study single-cell exocytosis will be highlighted, including total internal reflection fluorescence microscopy, capillary electrophoresis, single-cell mass spectrometry, and microelectrochemistry. These techniques are arranged in the order following the route of a vesicle/granule destined for secretion. Within each section, the basic principles and experimental strategies are reviewed and representative examples are given revealing critical spatial, temporal, and chemical information of a secretory vesicle/granule at different stages of its lifetime. Lastly, an analytical chemist's perspective on potential future developments in this exciting field is discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources