Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;65(6):547-52.
doi: 10.1136/thx.2009.129296.

Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma

Affiliations
Review

Ca(2+) homeostasis and structural and functional remodelling of airway smooth muscle in asthma

Katharina Mahn et al. Thorax. 2010 Jun.

Abstract

Asthma is characterised by airway hyper-responsiveness and remodelling, and there is mounting evidence that alterations in the phenotype of airway smooth muscle (ASM) play a central role in these processes. Although the concept that dysregulation of ASM Ca(2+) homeostasis may underlie at least part of these alterations has been around for many years, it is only relatively recently that the availability of ASM biopsies from subjects with mild and moderate asthma has allowed it to be properly investigated. In this article, critical components of the pathobiology of asthmatic ASM, including contractile function, proliferation, cell migration and secretion of proinflammatory cytokines and chemokines, are reviewed and related to associated changes in ASM Ca(2+) homeostasis. Based on this evidence, it is proposed that a unifying mechanism for the abnormal asthmatic phenotype is dysregulation of Ca(2+) homeostasis caused at least in part by a downregulation in expression and function of sarcoendoplasmic Ca(2+) ATPases (SERCAs).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms