Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Nov;106(1-2):123-34.
doi: 10.1007/s11120-010-9563-7. Epub 2010 Jun 4.

Inorganic carbon acquisition by eukaryotic algae: four current questions

Affiliations
Review

Inorganic carbon acquisition by eukaryotic algae: four current questions

John A Raven. Photosynth Res. 2010 Nov.

Abstract

The phylogenetically and morphologically diverse eukaryotic algae are typically oxygenic photolithotrophs. They have a diversity of incompletely understood mechanisms of inorganic carbon acquisition: this article reviews four areas where investigations continue. The first topic is diffusive CO(2) entry. Most eukaryotic algae, like all cyanobacteria, have inorganic carbon concentrating mechanisms (CCMs). The ancestral condition was presumably the absence of a CCM, i.e. diffusive CO(2) entry, as found in a small minority of eukaryotic algae today; however, it is likely that, as is found in several cases, this condition is due to a loss of a CCM. There are a number of algae which are in various respects intermediate between diffusive CO(2) entry and occurrence of a CCM: further study is needed on this aspect. A second topic is the nature of cyanelles and their role in inorganic carbon assimilation. The cyanelles (plastids) of the euglyphid amoeba Paulinella have been acquired relatively recently by endosymbiosis with genetic integration of an α-cyanobacterium with a Form 1A Rubisco. The α-carboxysomes in the cyanelles are presumably involved in a CCM, but further investigation is needed.Also called cyanelles are the plastids of glaucocystophycean algae, but is it now clear that these were derived from the β-cyanobacterial ancestor of all plastids other than that of Paulinella. The resemblances of the central body of the cyanelles of glaucocystophycean algae to carboxysomes may not reflect derivation from cyanobacterial β-carboxysomes; although it is clear that these algae have CCMs but these are now well characterized. The other two topics concern CCMs in other eukaryotic algae; these CCMs arose polyphyletically and independently of the cyanobacterial CCMs. It is generally believed that eukaryotic algal, like cyanobacterial, CCMs are based on active transport of an inorganic carbon species and/or protons, and they have C(3) biochemistry. This is the case for the organism considered as the third topic, i.e. Chlamydomonas reinhardtii, the eukaryotic alga with the best understood CCM. This CCM involves HCO(3)(-) conversion to CO(2) in the thylakoid lumen so the external inorganic carbon must cross four membranes in series with a final CO(2) effux from the thylakoid. More remains to be investigated about this CCM. The final topic is that of the occurrence of C(4)-like metabolism in the CCMs of marine diatoms. Different conclusions have been reached depending on the organism investigated and the techniques used, and several aspects require further study.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Photosynth Res. 2007 Jul-Sep;93(1-3):79-88 - PubMed
    1. Plant Physiol. 2004 Aug;135(4):2106-11 - PubMed
    1. J Phycol. 2009 Oct;45(5):1083-92 - PubMed
    1. Plant Cell Environ. 2007 Nov;30(11):1422-35 - PubMed
    1. Mol Biol Evol. 2010 Mar;27(3):581-90 - PubMed

Publication types

LinkOut - more resources