Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Oct 1;111(2):497-507.
doi: 10.1002/jcb.22734.

Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate

Affiliations
Comparative Study

Fatty acid-induced oxidation and triglyceride formation is higher in insulin-producing MIN6 cells exposed to oleate compared to palmitate

Kristofer Thörn et al. J Cell Biochem. .

Abstract

Palmitate negatively affects insulin secretion and apoptosis in the pancreatic β-cell. The detrimental effects are abolished by elongating and desaturating the fatty acid into oleate. To investigate mechanisms of how the two fatty acids differently affect β-cell function and apoptosis, lipid handling was determined in MIN6 cells cultured in the presence of the fatty acids palmitate (16:0) and oleate (18:1) and also corresponding monounsaturated fatty acid palmitoleate (16:1) and saturated fatty acid stearate (18:0). Insulin secretion was impaired and apoptosis accentuated in palmitate-, and to some extent, stearate-treated cells. Small or no changes in secretion or apoptosis were observed in cells exposed to palmitoleate or oleate. Expressions of genes associated with fatty acid esterification (SCD1, DGAT1, DGAT2, and FAS) were augmented in cells exposed to palmitate or stearate but only partially (DGAT2) in palmitoleate- or oleate-treated cells. Nevertheless, levels of triglycerides were highest in cells exposed to oleate. Similarly, fatty acid oxidation was most pronounced in oleate-treated cells despite comparable up-regulation of CPT1 after treatment of cells with the four different fatty acids. The difference in apoptosis between palmitate and stearate was paralleled by similar differences in levels of markers of endoplasmic reticulum (ER) stress in cells exposed to the two fatty acids. Palmitate-induced ER stress was not accounted for by ceramide de novo synthesis. In conclusion, although palmitate initiated stronger expression changes consistent with lipid accumulation and combustion in MIN6 cells, rise in triglyceride levels and fatty acid oxidation was favored specifically in cells exposed to oleate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources