Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun 1;88(11):4946-50.
doi: 10.1073/pnas.88.11.4946.

Iron-independent induction of ferritin H chain by tumor necrosis factor

Affiliations

Iron-independent induction of ferritin H chain by tumor necrosis factor

L L Miller et al. Proc Natl Acad Sci U S A. .

Abstract

Iron increases the synthesis of the iron-storage protein, ferritin, largely by promoting translation of preexisting mRNAs for both the H and L ferritin isoforms (H, heavy, heart, acidic; L, light, liver, basic). We have recently cloned and sequenced a full-length cDNA to murine ferritin H and identified ferritin H as a gene induced by tumor necrosis factor alpha (TNF-alpha, cachectin). Using primary human myoblasts, we have now examined the relationship between TNF-alpha and iron in regulating ferritin. Four lines of evidence suggest that TNF-alpha regulates ferritin independently of iron. First, evaluation of mRNA showed that TNF-alpha increased ferritin H chain specifically, provoking no change in steady-state levels of ferritin L mRNA; iron, in contrast, increased the mRNA of both isoforms. Second, the increase in ferritin H protein synthesis observed during TNF-alpha treatment was dependent on an increase in ferritin H mRNA: actinomycin D blocked the TNF-alpha-induced changes in ferritin H but did not inhibit the translational induction of ferritin seen with iron treatment. Third, equal ferritin mRNA induction was observed in iron-loaded cells and in cells depleted of iron by a permeant chelator, 2,2'-dipyridyl. Fourth, ferritin H induction by TNF-alpha and iron was additive over the entire range of iron concentrations, even at TNF-alpha doses known to maximally stimulate ferritin H mRNA levels. Nonetheless, the role of iron in translational regulation of ferritin was retained in TNF-alpha-treated cells; effective biosynthesis of TNF-alpha-induced, H-subunit-predominant ferritin protein required iron and could be enhanced by treatment of the cells with additional iron or blocked by 2,2'-dipyridyl. Finally, we observed that the TNF-alpha-mediated increase in ferritin synthesis peaked at 8 hr and was followed by a decrease in both H and L isoferritin synthesis; the addition of iron, however, reversed the late-occurring depression in ferritin synthesis. This suggests that TNF-alpha-induced synthesis of H-rich ferritin may reduce the regulatory pool of intracellular iron, secondarily inhibiting iron-mediated translation of ferritin mRNA. We conclude that TNF-alpha acts independently of iron in its induction of ferritin H mRNA but requires the presence of iron for this effect to be fully expressed at the protein level.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Cell Biol. 1988 Jun;8(6):2295-301 - PubMed
    1. Biochem Biophys Res Commun. 1990 May 31;169(1):289-96 - PubMed
    1. Science. 1988 Sep 2;241(4870):1207-10 - PubMed
    1. J Biol Chem. 1988 Dec 5;263(34):18086-92 - PubMed
    1. Blood. 1977 Jan;49(1):147-53 - PubMed

Publication types