Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 28;5(5):e10887.
doi: 10.1371/journal.pone.0010887.

Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes

Affiliations

Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes

Hilgo Bruining et al. PLoS One. .

Abstract

Background: The etiology of autism spectrum disorders (ASD) is largely determined by different genetic factors of variable impact. This genetic heterogeneity could be a factor to explain the clinical heterogeneity of autism spectrum disorders. Here, a first attempt is made to assess whether genetically more homogeneous ASD groups are associated with decreased phenotypic heterogeneity with respect to their autistic symptom profile.

Methodology: The autistic phenotypes of ASD subjects with 22q11 deletion syndrome (22q11DS) and ASD subjects with Klinefelter Syndrome (KS) were statistically compared to the symptom profile of a large (genetically) heterogeneous ASD sample. Autism diagnostic interview-revised (ADI-R) variables were entered in different statistical analyses to assess differences in symptom homogeneity and the feasibility of discrimination of group-specific ASD-symptom profiles.

Principal findings: The results showed substantially higher symptom homogeneity in both the genetic disorder ASD groups in comparison to the heterogeneous ASD sample. In addition, a robust discrimination between 22q11-ASD and KS-ASD and idiopathic ASD phenotypes was feasible on the basis of a reduced number of autistic scales and symptoms. The lack of overlap in discriminating subscales and symptoms between KS-ASD and 22q11DS-ASD suggests that their autistic symptom profiles cluster around different points in the total diagnostic space of profiles present in the general ASD population.

Conclusion: The findings of the current study indicate that the clinical heterogeneity of ASDs may be reduced when subgroups based on a specific genotype are extracted from the idiopathic ASD population. The current strategy involving the widely used ADI-R offers a relatively straightforward possibility for assessing genotype-phenotype ASD relationships. Reverse phenotype strategies are becoming more feasible, given the accumulating evidence for the existence of genetic variants of large effect in a substantial proportion of the ASD population.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Mean number of ADI-R items reaching autistic criterion (ADI-R score  =  2).
* P<0.002, ** P<0.0001, univariate analysis of variance.
Figure 2
Figure 2. Plot of individual subject canonical function coefficients of the 3-group discriminant analysis for heterogeneous ASD (grey dots) versus 22q11DS-ASD (red dots) versus KS-ASD (blue dots), the larger dots represent the group centroids.
22q11DS-ASD is predominantly discriminated from heterogeneous ASD by function 1, KS-ASD from heterogeneous ASD by function 2.

References

    1. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–355. - PMC - PubMed
    1. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113:e472–e486. - PubMed
    1. Beaudet AL. Autism: highly heritable but not inherited. Nat Med. 2007;13:534–536. - PubMed
    1. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–449. - PMC - PubMed
    1. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet. 2009;5:e1000536. - PMC - PubMed