Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte
- PMID: 20527732
- DOI: 10.1021/ac101021q
Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte
Abstract
Here we describe the electrochemical oxidation of an assembly of gold nanoparticles (Au NPs) attached to glass/indium-tin-oxide (ITO) electrodes as a function of particle size. We synthesized Au NP arrays with NP diameters ranging from 8 to 250 nm by electrodeposition of Au from HAuCl(4) in H(2)SO(4) at potentials of -0.2 to 0.8 V versus Ag/AgCl using chronocoulometry to keep the amount of Au deposited constant. The average Au NP size increased with increasing deposition potential. The chemical reduction of HAuCl(4) by NaBH(4) in trisodium citrate solution led to 4 nm average diameter Au NPs, which we chemisorbed to the glass/ITO electrode. Linear sweep voltammograms (LSVs) obtained on the glass/ITO/Au NP (4 to 250 nm) electrodes (with a constant coverage of Au in terms of Au atoms per cm(2)) from 0.5 to 1.1 V in 0.01 M potassium bromide plus 0.1 M HClO(4) showed a positive shift in oxidation potential from 734 +/- 1 mV to 913 +/- 19 mV with increasing Au NP diameter. The shift agrees qualitatively with that predicted by a shift in the redox potential based on a difference in free energy associated with a change in surface energy as a function of particle size. On the basis of the charge during Au deposition versus the charge during oxidation, the oxidation process produces a mixture of Au(III)Br(4)(-) (25%) and Au(I)Br(2)(-) (75%). A glass/ITO electrode coated with a mixture of 4 and 250 nm Au NPs revealed 2 oxidation peaks, consistent with the two Au NP size populations present on the surface.
Similar articles
-
Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.Langmuir. 2010 Aug 17;26(16):13511-21. doi: 10.1021/la101639u. Langmuir. 2010. PMID: 20695598
-
Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential.J Am Chem Soc. 2012 Mar 21;134(11):5014-7. doi: 10.1021/ja2108933. Epub 2012 Mar 12. J Am Chem Soc. 2012. PMID: 22372940
-
Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.Langmuir. 2014 Nov 4;30(43):13075-84. doi: 10.1021/la5029614. Epub 2014 Oct 21. Langmuir. 2014. PMID: 25260111
-
Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.Biosens Bioelectron. 2007 Apr 15;22(9-10):1841-52. doi: 10.1016/j.bios.2006.09.018. Epub 2006 Oct 30. Biosens Bioelectron. 2007. PMID: 17071070 Review.
-
Biomolecule-nanoparticle hybrid systems for bioelectronic applications.Bioelectrochemistry. 2007 Jan;70(1):2-11. doi: 10.1016/j.bioelechem.2006.03.013. Epub 2006 Jun 5. Bioelectrochemistry. 2007. PMID: 16750941 Review.
Cited by
-
New insights into the influence of plasmonic and non-plasmonic nanostructures on the photocatalytic activity of titanium dioxide.Nanoscale Adv. 2023 Oct 4;5(22):6038-6044. doi: 10.1039/d3na00513e. eCollection 2023 Nov 7. Nanoscale Adv. 2023. PMID: 37941939 Free PMC article.
-
Dual-Role Peptide with Capping and Cleavage Site Motifs in Nanoparticle-Based One-Pot Colorimetric and Electrochemical Protease Assay.ACS Omega. 2023 Jun 9;8(25):22556-22566. doi: 10.1021/acsomega.3c00771. eCollection 2023 Jun 27. ACS Omega. 2023. PMID: 37396282 Free PMC article.
-
Recent State and Challenges in Spectroelectrochemistry with Its Applications in Microfluidics.Micromachines (Basel). 2023 Mar 17;14(3):667. doi: 10.3390/mi14030667. Micromachines (Basel). 2023. PMID: 36985074 Free PMC article. Review.
-
Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles.Chem Sci. 2015 May 1;6(5):2705-2720. doi: 10.1039/c5sc00461f. Epub 2015 Mar 23. Chem Sci. 2015. PMID: 28706663 Free PMC article.
-
Growth of Supported Gold Nanoparticles in Aqueous Phase Studied by in Situ Transmission Electron Microscopy.J Phys Chem C Nanomater Interfaces. 2020 Jan 23;124(3):2202-2212. doi: 10.1021/acs.jpcc.9b10237. Epub 2019 Dec 31. J Phys Chem C Nanomater Interfaces. 2020. PMID: 32010421 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous