Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;11(1):3-8.
doi: 10.1089/vbz.2009.0214. Epub 2010 Jun 7.

Anaplasma spp. in wild mammals and Ixodes ricinus from the north of Spain

Affiliations

Anaplasma spp. in wild mammals and Ixodes ricinus from the north of Spain

Aránzazu Portillo et al. Vector Borne Zoonotic Dis. 2011 Jan.

Abstract

Our objectives were to investigate the presence of Anaplasma spp. infection in red deer, wild boars, and Ixodes ricinus removed from deer surveyed in La Rioja, as well as to analyze the presence of Anaplasma spp. in I. ricinus from different Spanish regions--ours included. A total of 21 deer and 13 wild boar blood samples as well as 295 I. ricinus removed from deer, vegetation, or asymptomatic people were tested by polymerase chain reaction targeting Anaplasma spp. 16S rRNA gene and groESL heat shock operon. Twelve deer blood samples were found to be infected with Anaplasma centrale (n = 7) or Anaplasma phagocytophilum (n = 5). No wild boar blood samples gave positive polymerase chain reaction results. Further, A. phagocytophilum was detected in 12 out of 89 I. ricinus removed from deer and in 18 out of 168 I. ricinus collected over vegetation in the North of Spain. Anaplasma spp. was not detected in any of the 38 I. ricinus removed from people. Nucleotide sequences for 16S rRNA gene showed substancial heterogeneity. The etiological agent of human anaplasmosis was found in two deer blood samples, an adult tick from deer, and a nymph from vegetation. The 16S rRNA sequences for 12 out of 35 samples matched the sequence of the Ap-variant 1 strain previously described in the United States, and the remaining 19 positive samples (deer blood and I. ricinus) showed variations with unknown significance. Although the groEL DNA sequences varied among analyzed strains, the deduced amino acid sequences did not change for any of them. This study suggests that deer population from La Rioja harbors strains of A. phagocytophilum similar to that pathogen for humans and other of unknown pathogenicity. Further, it seems that the Ap-variant 1 is circulating among I. ricinus ticks from the North of Spain more frequently than the A. phagocytophilum strain associated to human anaplasmosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources