Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;100(7):682-8.
doi: 10.1094/PHYTO-100-7-0682.

Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants

Affiliations
Free article

Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants

Ainhoa Martínez-Medina et al. Phytopathology. 2010 Jul.
Free article

Abstract

The plant hormones salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) are known to play crucial roles in plant disease and pest resistance. Changes in the concentrations of these plant hormones in melon plant shoots, as a consequence of the interaction between the plant, the pathogen Fusarium oxysporum, the antagonistic microorganism Trichoderma harzianum, and the arbuscular mycorrhizal fungus Glomus intraradices were investigated. Attack by F. oxysporum activated a defensive response in the plant, mediated by the plant hormones SA, JA, ET, and ABA, similar to the one produced by T. harzianum. When inoculated with the pathogen, both T. harzianum and G. intraradices attenuated the plant response mediated by the hormones ABA and ET elicited by the pathogen attack. T. harzianum was also able to attenuate the SA-mediated response. In the three-way interaction (F. oxysporum-T. harzianum-G. intraradices), although a synergistic effect in reducing disease incidence was found, no synergistic effect on the modulation of the hormone disruption induced by the pathogen was observed. These results suggest that the induction of plant basal resistance and the attenuation of the hormonal disruption caused by F. oxysporum are both mechanisms by which T. harzianum can control Fusarium wilt in melon plants; while the mechanisms involving G. intraradices seem to be independent of SA and JA signaling.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources