Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:64:373-90.
doi: 10.1146/annurev.micro.112408.134205.

Use of fluorescence microscopy to study intracellular signaling in bacteria

Affiliations
Review

Use of fluorescence microscopy to study intracellular signaling in bacteria

David Kentner et al. Annu Rev Microbiol. 2010.

Abstract

Following the introduction of fluorescent protein tags, the application of fluorescence microscopy in microbial cell biology has advanced the field dramatically. We now understand that bacterial cells are not simple bags of enzymes but have complex internal structures, and that specific intracellular organization plays an important role in a number of processes, including signal transduction. The quantitative nature and high temporal resolution of fluorescence microscopy make it particularly useful for studies of intracellular dynamic systems, such as signaling networks. Applications of fluorescence microscopy in signaling are not limited to studying localization. Several techniques allow researchers to follow real-time dynamics of protein interactions, at steady state or upon stimulation, and therefore to investigate signal propagation, amplification, and integration in the cell. Moreover, microscopy enables investigation of single-cell gene expression kinetics, bringing such concepts as cell individuality and robustness against stochasticity of gene expression to the forefront of signaling studies.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources