Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;59(3):447-55.
doi: 10.1111/j.1574-695X.2010.00696.x. Epub 2010 May 12.

The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli

Affiliations
Free article

The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli

Louise Carson et al. FEMS Immunol Med Microbiol. 2010 Aug.
Free article

Abstract

Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.

PubMed Disclaimer

MeSH terms

LinkOut - more resources