Significance of SGK1 in the regulation of neuronal function
- PMID: 20530112
- PMCID: PMC2988501
- DOI: 10.1113/jphysiol.2010.190926
Significance of SGK1 in the regulation of neuronal function
Abstract
The present brief review highlights the putative role of the serum- and glucocorticoid-inducible-kinase-1 (SGK1) in the regulation of neuronal function. SGK1 is genomically upregulated by cell shrinkage and by a variety of hormones including mineralocorticoids and glucocorticoids. The kinase is activated by insulin and growth factors via phosphatidylinositide-3-kinase (PI3-kinase), phosphoinositide-dependent kinase PDK1 and mammalian target of rapamycin mTORC2. SGK1 upregulates ion channels (e.g. SCN5A, ENaC, ASIC1, TRPV5,6, ROMK, Kv1.1-5, KCNEx/KCNQ1-5, GluR6, VSOAC, ClC2, CFTR), carriers (e.g. NHE3, NKCC2, NCC, NaPiIIb, SMIT, GLUT1,4, SGLT1, NaDC, EAAT1-5, SN1, ASCT2, 4F2/LAT, PepT2), and the Na(+)/K(+)-ATPase. SGK1 regulates enzymes (e.g. glycogen-synthase-kinase-3, ubiquitin-ligase Nedd4-2, phosphomannose-mutase-2), and transcription factors (e.g. forkhead transcription factor Foxo3a, β-catenin, nuclear factor-kappa-B (NFB)). SGK1 participates in the regulation of transport, hormone release, neuroexcitability, inflammation, coagulation, cell proliferation and apoptosis. SGK1 contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Presumably, SGK1 contributes to the regulation of diverse cerebral functions (e.g. memory consolidation, fear retention) and the pathophysiology of several cerebral diseases (e.g. Parkinson's disease, schizophrenia, depression, Alzheimer's disease). Despite multiple SGK1 functions, the phenotype of the SGK1 knockout mouse is mild and becomes only apparent under challenging conditions.
Similar articles
-
(Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms.Physiol Rev. 2006 Oct;86(4):1151-78. doi: 10.1152/physrev.00050.2005. Physiol Rev. 2006. PMID: 17015487 Review.
-
Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth.Hormones (Athens). 2013 Apr-Jun;12(2):160-71. doi: 10.14310/horm.2002.1401. Hormones (Athens). 2013. PMID: 23933686 Review.
-
Therapeutic potential of serum and glucocorticoid inducible kinase inhibition.Expert Opin Investig Drugs. 2013 Jun;22(6):701-14. doi: 10.1517/13543784.2013.778971. Epub 2013 Mar 19. Expert Opin Investig Drugs. 2013. PMID: 23506284 Review.
-
Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1.Mol Membr Biol. 2014 Feb;31(1):29-36. doi: 10.3109/09687688.2013.874598. Epub 2014 Jan 14. Mol Membr Biol. 2014. PMID: 24417516 Review.
-
Targeting SGK1 in diabetes.Expert Opin Ther Targets. 2009 Nov;13(11):1303-11. doi: 10.1517/14728220903260807. Expert Opin Ther Targets. 2009. PMID: 19764891 Free PMC article. Review.
Cited by
-
Association between Decreased SGK1 and Increased Intestinal α-Synuclein in an MPTP Mouse Model of Parkinson's Disease.Int J Mol Sci. 2023 Nov 16;24(22):16408. doi: 10.3390/ijms242216408. Int J Mol Sci. 2023. PMID: 38003598 Free PMC article.
-
cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation.Cell Commun Signal. 2024 Jan 9;22(1):22. doi: 10.1186/s12964-023-01466-w. Cell Commun Signal. 2024. PMID: 38195584 Free PMC article. Review.
-
miR-17-92 Cluster Regulates Adult Hippocampal Neurogenesis, Anxiety, and Depression.Cell Rep. 2016 Aug 9;16(6):1653-1663. doi: 10.1016/j.celrep.2016.06.101. Epub 2016 Jul 28. Cell Rep. 2016. PMID: 27477270 Free PMC article.
-
Genome-Wide Analysis of Glucocorticoid-Responsive Transcripts in the Hypothalamic Paraventricular Region of Male Rats.Endocrinology. 2019 Jan 1;160(1):38-54. doi: 10.1210/en.2018-00535. Endocrinology. 2019. PMID: 30364965 Free PMC article.
-
Hippocampal gene expression changes underlying stress sensitization and recovery.Mol Psychiatry. 2014 Nov;19(11):1171-8. doi: 10.1038/mp.2013.175. Epub 2013 Dec 17. Mol Psychiatry. 2014. PMID: 24342991 Free PMC article.
References
-
- Ackermann TF, Hortnagl H, Wolfer DP, Colacicco G, Sohr R, Lang F, Hellweg R, Lang UE. Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cell Physiol Biochem. 2008;22:735–744. - PubMed
-
- Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault C, Dembele D, Le Merrer J, Becker JA, Poch O, Kieffer BL. Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur J Neurosci. 2008;27:2973–2984. - PubMed
-
- Benarroch EE. Glutamate transporters: diversity, function, and involvement in neurologic disease. Neurology. 2010;74:259–264. - PubMed
-
- Boehmer C, Laufer J, Jeyaraj S, Klaus F, Lindner R, Lang F, Palmada M. Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination. Cell Physiol Biochem. 2008a;22:591–600. - PubMed
-
- Boehmer C, Palmada M, Klaus F, Jeyaraj S, Lindner R, Laufer J, Daniel H, Lang F. The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2. Cell Physiol Biochem. 2008b;22:705–714. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous