Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 May;40(5):422-32.
doi: 10.1111/j.1365-2362.2010.02285.x.

VEGF-DdeltaNdeltaC mediated angiogenesis in skeletal muscles of diabetic WHHL rabbits

Affiliations
Comparative Study

VEGF-DdeltaNdeltaC mediated angiogenesis in skeletal muscles of diabetic WHHL rabbits

Himadri Roy et al. Eur J Clin Invest. 2010 May.

Abstract

Background: Arterial occlusive disease is often associated with diabetes mellitus and hypercholesterolaemia which may reduce angiogenic potential of several growth factors. Accordingly, the usefulness of therapeutic angiogenesis in the presence of diabetes and hypercholesterolaemia has remained unclear. We evaluated angiogenic effects of the mature form of vascular endothelial growth factor-D (VEGF-D(deltaNdeltaC)) in skeletal muscles in the presence of severe diabetes and hypercholesterolaemia.

Methods: Intra muscular injections of adenoviruses encoding human VEGF-D(deltaNdeltaC) (AdVEGF-D(deltaNdeltaC)) were given in the hind limbs of a group of diabetic hypercholesterolaemic rabbits and adenoviruses encoding LacZ (AdLacZ) were used as a control. All animals were killed 6 days after the gene transfer.

Results: Capillary count, capillary area, capillary permeability and perfusion were significantly higher in the AdVEGF-D(deltaNdeltaC) transduced muscles compared with the AdLacZ controls. Expressions of endothelial nitric oxide synthase (eNOS) and VEGF receptor(R)-2 were also significantly increased in the VEGF-D(deltaNdeltaC) transduced muscles, along with an increased expression of angiopoietins (Angs) and neuropilin-2 (NP-2). Furthermore, VEGF-D(deltaNdeltaC) gene transfer to the skeletal muscles increased localized recruitment of cells with endothelial progenitor-like characteristics.

Conclusions: VEGF-D(deltaNdeltaC) gene transfer can induce efficient angiogenesis in the presence of severe diabetes and hypercholesterolaemia by upregulating eNOS and VEGFR-2 expression. VEGF-D(deltaNdeltaC) appears to be a promising agent for inducing therapeutic angiogenesis even in cases with severe diabetes and hypercholesterolaemia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources