Energy conversion in natural and artificial photosynthesis
- PMID: 20534342
- PMCID: PMC2891097
- DOI: 10.1016/j.chembiol.2010.05.005
Energy conversion in natural and artificial photosynthesis
Abstract
Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion.
2010 Elsevier Ltd. All rights reserved.
Figures






Similar articles
-
Solar fuels via artificial photosynthesis.Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b. Acc Chem Res. 2009. PMID: 19902921
-
Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.Curr Opin Biotechnol. 2010 Jun;21(3):298-310. doi: 10.1016/j.copbio.2010.03.021. Epub 2010 May 1. Curr Opin Biotechnol. 2010. PMID: 20439158 Review.
-
Biomimetic and microbial approaches to solar fuel generation.Acc Chem Res. 2009 Dec 21;42(12):1899-909. doi: 10.1021/ar900127h. Acc Chem Res. 2009. PMID: 19757805
-
Biology and technology for photochemical fuel production.Chem Soc Rev. 2009 Jan;38(1):25-35. doi: 10.1039/b800582f. Epub 2008 Nov 4. Chem Soc Rev. 2009. PMID: 19088962 Review.
-
Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies.Chem Rev. 2022 Nov 9;122(21):16051-16109. doi: 10.1021/acs.chemrev.2c00200. Epub 2022 Sep 29. Chem Rev. 2022. PMID: 36173689 Review.
Cited by
-
Stabilisierung von Elektronentransferwegen erlaubt Stabilität von Biohybrid-Photoelektroden über Jahre.Angew Chem Weinheim Bergstr Ger. 2022 Jun 13;134(24):e202201148. doi: 10.1002/ange.202201148. Epub 2022 Apr 19. Angew Chem Weinheim Bergstr Ger. 2022. PMID: 38504712 Free PMC article.
-
Challenges and opportunities for structural DNA nanotechnology.Nat Nanotechnol. 2011 Nov 6;6(12):763-72. doi: 10.1038/nnano.2011.187. Nat Nanotechnol. 2011. PMID: 22056726 Free PMC article. Review.
-
Limits on Natural Photosynthesis.J Phys Chem B. 2017 Aug 3;121(30):7229-7234. doi: 10.1021/acs.jpcb.7b03024. Epub 2017 Jul 19. J Phys Chem B. 2017. PMID: 28678505 Free PMC article.
-
Hybrid complexes of photosynthetic reaction centers and quantum dots in various matrices: resistance to UV irradiation and heating.Photosynth Res. 2019 Mar;139(1-3):295-305. doi: 10.1007/s11120-018-0529-5. Epub 2018 Jun 15. Photosynth Res. 2019. PMID: 29948749
-
A conductive metal-organic framework photoanode.Chem Sci. 2020 Aug 27;11(35):9593-9603. doi: 10.1039/d0sc04302h. Chem Sci. 2020. PMID: 34094225 Free PMC article.
References
-
- Abrahamsson MLA, Baudin HB, Tran A, Philouze C, Berg KE, Raymond-Johansson MK, Sun L, Aakermark B, Styring S, Hammarström L. Ruthenium-manganese complexes for artificial photosynthesis: Factors controlling intramolecular electron transfer and excited-state quenching reactions. Inorg Chem. 2002;41:1534–1544. - PubMed
-
- Adir N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res. 2005;85:15–32. - PubMed
-
- Ahrens MJ, Sinks LE, Rybtchinski B, Liu W, Jones BA, Giaimo JM, Gusev AV, Goshe AJ, Tiede DM, Wasielewski MR. Self-assembly of supramolecular light-harvesting arrays from covalent multi-chromophore perylene-3,4:9,10-bis(dicarboximide) building blocks. J Am Chem Soc. 2004;126:8284–8294. - PubMed
-
- Alstrum-Acevedo JH, Brennaman MK, Meyer TJ. Chemical Approaches to Artificial Photosynthesis.2. Inorg Chem. 2005;44:6802–6827. - PubMed
-
- Ardo S, Meyer GJ. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev. 2009;38:115–164. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources