Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
- PMID: 20534465
- PMCID: PMC2890747
- DOI: 10.1073/pnas.1003653107
Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
Abstract
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis.J Bacteriol. 2013 Nov;195(22):5160-5. doi: 10.1128/JB.00895-13. Epub 2013 Sep 13. J Bacteriol. 2013. PMID: 24039260 Free PMC article.
-
Methanococcus maripaludis Employs Three Functional Heterodisulfide Reductase Complexes for Flavin-Based Electron Bifurcation Using Hydrogen and Formate.Biochemistry. 2018 Aug 14;57(32):4848-4857. doi: 10.1021/acs.biochem.8b00662. Epub 2018 Jul 30. Biochemistry. 2018. PMID: 30010323
-
Formate-Dependent Heterodisulfide Reduction in a Methanomicrobiales Archaeon.Appl Environ Microbiol. 2021 Feb 26;87(6):e02698-20. doi: 10.1128/AEM.02698-20. Print 2021 Feb 26. Appl Environ Microbiol. 2021. PMID: 33361366 Free PMC article.
-
Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis.Front Microbiol. 2018 Jun 20;9:1322. doi: 10.3389/fmicb.2018.01322. eCollection 2018. Front Microbiol. 2018. PMID: 29973922 Free PMC article. Review.
-
Functional diversity of prokaryotic HdrA(BC) modules: Role in flavin-based electron bifurcation processes and beyond.Biochim Biophys Acta Bioenerg. 2021 Apr 1;1862(4):148379. doi: 10.1016/j.bbabio.2021.148379. Epub 2021 Jan 16. Biochim Biophys Acta Bioenerg. 2021. PMID: 33460586 Review.
Cited by
-
Interspecies Formate Exchange Drives Syntrophic Growth of Syntrophotalea carbinolica and Methanococcus maripaludis.Appl Environ Microbiol. 2022 Dec 13;88(23):e0115922. doi: 10.1128/aem.01159-22. Epub 2022 Nov 14. Appl Environ Microbiol. 2022. PMID: 36374033 Free PMC article.
-
Type IV-Like Pili Facilitate Transformation in Naturally Competent Archaea.J Bacteriol. 2020 Oct 8;202(21):e00355-20. doi: 10.1128/JB.00355-20. Print 2020 Oct 8. J Bacteriol. 2020. PMID: 32817089 Free PMC article.
-
Fundamentals of methanogenic pathways that are key to the biomethanation of complex biomass.Curr Opin Biotechnol. 2011 Jun;22(3):351-7. doi: 10.1016/j.copbio.2011.04.011. Epub 2011 May 17. Curr Opin Biotechnol. 2011. PMID: 21555213 Free PMC article. Review.
-
Genomic analysis of methanogenic archaea reveals a shift towards energy conservation.BMC Genomics. 2017 Aug 21;18(1):639. doi: 10.1186/s12864-017-4036-4. BMC Genomics. 2017. PMID: 28826405 Free PMC article.
-
Electron flow in hydrogenotrophic methanogens under nickel limitation.Nature. 2025 Aug;644(8076):490-496. doi: 10.1038/s41586-025-09229-y. Epub 2025 Jul 2. Nature. 2025. PMID: 40604290 Free PMC article.
References
-
- Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic Archaea: Ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579–591. - PubMed
-
- Tumbula DL, Whitman WB. Genetics of Methanococcus: Possibilities for functional genomics in Archaea. Mol Microbiol. 1999;33:1–7. - PubMed
-
- Haydock AK, Porat I, Whitman WB, Leigh JA. Continuous culture of Methanococcus maripaludis under defined nutrient conditions. FEMS Microbiol Lett. 2004;238:85–91. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases