The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men
- PMID: 20534765
- PMCID: PMC2913038
- DOI: 10.1210/jc.2010-0102
The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men
Abstract
Background: During testosterone (T) therapy, T is partly converted to 17beta-estradiol (E2) and 5alpha-dihydrotestosterone (DHT). Effects of age, testosterone dose, and body composition on total and free E2 and DHT levels are unknown.
Objective: We evaluated age and dose-related differences in E2 and DHT levels in response to graded doses of testosterone enanthate in young and older men.
Methods: Fifty-one young (aged 19-35 yr) and 52 older (aged 59-75 yr) men completed treatment with monthly injections of a GnRH agonist plus randomly assigned weekly doses of testosterone enanthate (25, 50, 125, 300, or 600 mg) for 5 months.
Results: During testosterone administration, total and free E2 levels increased dose-dependently (dose effect, P<0.001) in both young and older men. Total and free E2 levels and E2:T ratios during T administration were higher in older than young men, but age-related differences in free E2 and free E2:T ratios were not significant after adjusting for testosterone levels, percentage fat mass, and SHBG. DHT levels and DHT:T ratios were dose-related but did not differ between young and older men. Mechanistic modeling of free hormone data revealed that the conversions of T to E2 and DHT were both consistent with saturable Michaelis-Menten kinetics. The in vivo Km values were estimated to be 1.83 nm for aromatase and 3.35 nm for 5alpha-reductase, independent of age. The Vmax parameter for E2 was 40% higher in older men than younger men, but Vmax for DHT was not significantly different between age groups.
Conclusions: During im testosterone administration, E2 and DHT levels exhibit saturable increases with dose. The rate of whole body aromatization is higher in older men, partly related to their higher percentage fat mass, SHBG, and testosterone levels.
Figures
References
-
- Simpson ER 2003 Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86:225–230 - PubMed
-
- Meikle AW, Mazer NA, Moellmer JF, Stringham JD, Tolman KG, Sanders SW, Odell WD 1992 Enhanced transdermal delivery of testosterone across nonscrotal skin produces physiological concentrations of testosterone and its metabolites in hypogonadal men. J Clin Endocrinol Metab 74:623–628 - PubMed
-
- Schubert M, Minnemann T, Hübler D, Rouskova D, Christoph A, Oettel M, Ernst M, Mellinger U, Krone W, Jockenhövel F 2004 Intramuscular testosterone undecanoate: pharmacokinetic aspects of a novel testosterone formulation during long-term treatment of men with hypogonadism. J Clin Endocrinol Metab 89:5429–5434 - PubMed
-
- von Eckardstein S, Nieschlag E 2002 Treatment of male hypogonadism with testosterone undecanoate injected at extended intervals of 12 weeks: a phase II study. J Androl 23:419–425 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
