Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Sep;17(9):1165-8.
doi: 10.1016/j.jocn.2010.01.042. Epub 2010 Jun 11.

Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease

Affiliations
Comparative Study

Inhibition of inducible nitric oxide synthase expression and cell death by (-)-epigallocatechin-3-gallate, a green tea catechin, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease

Ji Seon Kim et al. J Clin Neurosci. 2010 Sep.

Abstract

The aim of this study was to investigate the involvement of inducible nitric oxide synthase (iNOS) in the action of (-)-epigallocatechin-3-gallate (EGCG), a potential neuroprotective agent against Parkinson's disease (PD), and to test for toxicity resulting from high doses of EGCG. EGCG was administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice at two different doses (10mg/kg and 50mg/kg). EGCG treatment reduced the neuronal death rate to less than 50%. The level of iNOS expression in the MPTP group was 20% higher than that seen in the control group, but in the EGCG groups, iNOS expression was reduced to the level observed in the negative control group. The two doses of EGCG were equally beneficial for cell rescue, and no toxicity was observed with the higher dose. Inhibition of iNOS may be an important mechanism underlying the prevention of MPTP toxicity, and EGCG may potentially be a neuroprotective agent against PD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources