Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;3(3):246-50.
doi: 10.1007/s12265-010-9163-0.

Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury

Affiliations
Review

Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury

Zifang Song et al. J Cardiovasc Transl Res. 2010 Jun.

Abstract

Vascular smooth muscle cells (VSMCs) exhibit remarkable plasticity during postnatal development. Vascular injury initiates and perpetuates VSMCs dedifferentiation to a synthetic phenotype, which has been increasingly recognized to play a central role in neointimal hyperplasia during the pathogenesis of vascular proliferative diseases. MicroRNAs (miRNAs) are a novel class of regulatory noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to 3' untranslated regions of target mRNAs, leading to either degrading mRNAs or inhibiting their translation. There is emerging evidence that miRNAs are critical regulators of widespread cellular functions such as differentiation, proliferation, and migration. Recent studies have indicated that a number of specific miRNAs play important roles in regulation of vascular cell functions and contribute to neointimal hyperplasia after vascular injury. Here, we review recent advance regarding functions of specific miRNAs in vasculature and discuss possible mechanisms by which miRNAs modulate proliferation and differentiation of VSMCs.

Keywords: Cell Differentiation; Gene Regulation; MicroRNA; Smooth Muscle Cell; Vascular Injury.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. - PubMed
    1. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432:231–235. - PubMed
    1. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–240. - PubMed
    1. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. - PubMed
    1. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes and Development. 2004;18:3016–3027. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources