Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;27(2):203-9.
doi: 10.1111/j.1464-5491.2009.02917.x.

A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data

Affiliations
Review

A method of identifying and correcting miscoding, misclassification and misdiagnosis in diabetes: a pilot and validation study of routinely collected data

S de Lusignan et al. Diabet Med. 2010 Feb.

Abstract

Aims: Incorrect classification, diagnosis and coding of the type of diabetes may have implications for patient management and limit our ability to measure quality. The aim of the study was to measure the accuracy of diabetes diagnostic data and explore the scope for identifying errors.

Method: We used two sets of anonymized routinely collected computer data: the pilot used Cutting out Needless Deaths Using Information Technology (CONDUIT) study data (n = 221 958), which we then validated using 100 practices from the Quality Improvement in Chronic Kidney Disease (QICKD) study (n = 760,588). We searched for contradictory diagnostic codes and also compatibility with prescription, demographic and laboratory test data. We classified errors as: misclassified-incorrect type of diabetes; misdiagnosed-where there was no evidence of diabetes; or miscoded-cases where it was difficult to infer the type of diabetes.

Results: The standardized prevalence of diabetes was 5.0 and 4.0% in the CONDUIT and the QICKD data, respectively: 13.1% (n = 930) of CONDUIT and 14.8% (n = 4363) QICKD are incorrectly coded; 10.3% (n = 96) in CONDUIT and 26.2% (n = 1143) in QICKD are misclassified; nearly all of these cases are people classified with Type 1 diabetes who should be classified as Type 2. Approximately 5% of T2DM in both samples have no objective evidence to support a diagnosis of diabetes. Miscoding was present in approximately 7.8% of the CONDUIT and 6.1% of QICKD diabetes records.

Conclusions: The prevalence of miscoding, misclassification and misdiagnosis of diabetes is high and there is substantial scope for further improvement in diagnosis and data quality. Algorithms which identify likely misdiagnosis, misclassification and miscoding could be used to flag cases for review.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources