Adaptive resistance to the "last hope" antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS
- PMID: 20547815
- PMCID: PMC2916309
- DOI: 10.1128/AAC.00242-10
Adaptive resistance to the "last hope" antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS
Abstract
As multidrug resistance increases alarmingly, polymyxin B and colistin are increasingly being used in the clinic to treat serious Pseudomonas aeruginosa infections. In this opportunistic pathogen, subinhibitory levels of polymyxins and certain antimicrobial peptides induce resistance toward higher, otherwise lethal, levels of these antimicrobial agents. It is known that the modification of lipid A of lipopolysaccharide (LPS) is a key component of this adaptive peptide resistance, but to date, the regulatory mechanism underlying peptide regulation in P. aeruginosa has remained elusive. The PhoP-PhoQ and PmrA-PmrB two-component systems, which control this modification under low-Mg2+ conditions, do not appear to play a major role in peptide-mediated adaptive resistance, unlike in Salmonella where PhoQ is a peptide sensor. Here we describe the identification and characterization of a novel P. aeruginosa two-component regulator affecting polymyxin-adaptive resistance, ParR-ParS (PA1799-PA1798). This system was required for activation of the arnBCADTEF LPS modification operon in the presence of subinhibitory concentrations of polymyxin, colistin, or the bovine peptide indolicidin, leading to increased resistance to various polycationic antibiotics, including aminoglycosides. This study highlights the complexity of the regulatory network controlling resistance to cationic antibiotics and host peptides in P. aeruginosa, which has major relevance in the development and deployment of cationic antimicrobials.
Figures



Similar articles
-
Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa.Mol Microbiol. 2003 Oct;50(1):205-17. doi: 10.1046/j.1365-2958.2003.03673.x. Mol Microbiol. 2003. PMID: 14507375
-
Pseudomonas aeruginosa MipA-MipB envelope proteins act as new sensors of polymyxins.mBio. 2024 Mar 13;15(3):e0221123. doi: 10.1128/mbio.02211-23. Epub 2024 Feb 12. mBio. 2024. PMID: 38345374 Free PMC article.
-
Development of colistin resistance in pmrA-, phoP-, parR- and cprR-inactivated mutants of Pseudomonas aeruginosa.J Antimicrob Chemother. 2014 Nov;69(11):2966-71. doi: 10.1093/jac/dku238. Epub 2014 Jul 2. J Antimicrob Chemother. 2014. PMID: 24994873
-
Adaptive resistance to cationic compounds in Pseudomonas aeruginosa.Int J Antimicrob Agents. 2011 Mar;37(3):187-93. doi: 10.1016/j.ijantimicag.2010.11.019. Epub 2011 Feb 4. Int J Antimicrob Agents. 2011. PMID: 21295448 Review.
-
Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB.Future Microbiol. 2020 Apr;15(6):445-459. doi: 10.2217/fmb-2019-0322. Epub 2020 Apr 6. Future Microbiol. 2020. PMID: 32250173 Free PMC article. Review.
Cited by
-
Polymyxin B resistance and biofilm formation in Vibrio cholerae are controlled by the response regulator CarR.Infect Immun. 2015 Mar;83(3):1199-209. doi: 10.1128/IAI.02700-14. Epub 2015 Jan 12. Infect Immun. 2015. PMID: 25583523 Free PMC article.
-
Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran.Iran J Microbiol. 2016 Feb;8(1):62-9. Iran J Microbiol. 2016. PMID: 27092226 Free PMC article.
-
Cell Envelope Stress Response in Pseudomonas aeruginosa.Adv Exp Med Biol. 2022;1386:147-184. doi: 10.1007/978-3-031-08491-1_6. Adv Exp Med Biol. 2022. PMID: 36258072
-
Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis.Adv Exp Med Biol. 2022;1386:371-395. doi: 10.1007/978-3-031-08491-1_14. Adv Exp Med Biol. 2022. PMID: 36258080
-
Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort.Microbiology (Reading). 2022 Feb;168(2):001136. doi: 10.1099/mic.0.001136. Microbiology (Reading). 2022. PMID: 35118938 Free PMC article. Review.
References
-
- Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-472. - PubMed
-
- Bonomo, R. A., and D. Szabo. 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin. Infect. Dis. 43:SS49-SS56. - PubMed
-
- Choi, K. H., J. B. Gaynor, K. G. White, C. Lopez, C. M. Bosio, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2:443-448. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous