Down-state model of the voltage-sensing domain of a potassium channel
- PMID: 20550898
- PMCID: PMC2884232
- DOI: 10.1016/j.bpj.2010.03.031
Down-state model of the voltage-sensing domain of a potassium channel
Abstract
Voltage-sensing domains (VSDs) of voltage-gated potassium (Kv) channels undergo a series of conformational changes upon membrane depolarization, from a down state when the channel is at rest to an up state, all of which lead to the opening of the channel pore. The crystal structures reported to date reveal the pore in an open state and the VSDs in an up state. To gain insights into the structure of the down state, we used a set of experiment-based restraints to generate a model of the down state of the KvAP VSD using molecular-dynamics simulations of the VSD in a lipid bilayer in excess water. The equilibrated VSD configuration is consistent with the biotin-avidin accessibility and internal salt-bridge data used to generate it, and with additional biotin-avidin accessibility data. In the model, both the S3b and S4 segments are displaced approximately 10 A toward the intracellular side with respect to the up-state configuration, but they do not move as a rigid body. Arginine side chains that carry the majority of the gating charge also make large excursions between the up and down states. In both states, arginines interact with water and participate in salt bridges with acidic residues and lipid phosphate groups. An important feature that emerges from the down-state model is that the N-terminal half of the S4 segment adopts a 3(10)-helical conformation, which appears to be necessary to satisfy a complex salt-bridge network.
(c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.Biochim Biophys Acta. 2012 Jul;1818(7):1726-36. doi: 10.1016/j.bbamem.2012.02.029. Biochim Biophys Acta. 2012. PMID: 22425907 Free PMC article.
-
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.Biophys J. 2012 Jun 6;102(11):L44-6. doi: 10.1016/j.bpj.2012.04.021. Epub 2012 Jun 5. Biophys J. 2012. PMID: 22713585 Free PMC article.
-
NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.J Am Chem Soc. 2010 Apr 28;132(16):5630-7. doi: 10.1021/ja909752r. J Am Chem Soc. 2010. PMID: 20356312
-
The voltage-sensor structure in a voltage-gated channel.Trends Biochem Sci. 2005 Apr;30(4):166-8. doi: 10.1016/j.tibs.2005.02.006. Trends Biochem Sci. 2005. PMID: 15817390 Review.
-
Functional diversity of potassium channel voltage-sensing domains.Channels (Austin). 2016;10(3):202-13. doi: 10.1080/19336950.2016.1141842. Epub 2016 Jan 21. Channels (Austin). 2016. PMID: 26794852 Free PMC article. Review.
Cited by
-
Molecular pathogenesis of long QT syndrome type 1.J Arrhythm. 2016 Oct;32(5):381-388. doi: 10.1016/j.joa.2015.12.006. Epub 2016 Jan 27. J Arrhythm. 2016. PMID: 27761162 Free PMC article. Review.
-
Interaction of diverse voltage sensor homologs with lipid bilayers revealed by self-assembly simulations.Biophys J. 2011 Feb 16;100(4):875-84. doi: 10.1016/j.bpj.2010.11.049. Biophys J. 2011. PMID: 21320431 Free PMC article.
-
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.J Membr Biol. 2015 Jun;248(3):419-30. doi: 10.1007/s00232-015-9805-x. Epub 2015 May 14. J Membr Biol. 2015. PMID: 25972106 Free PMC article. Review.
-
Association of the P441L KCNQ1 variant with severity of long QT syndrome and risk of cardiac events.Front Cardiovasc Med. 2022 Oct 31;9:922335. doi: 10.3389/fcvm.2022.922335. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 36386331 Free PMC article.
-
Initial steps in the opening of a Shaker potassium channel.Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12800-4. doi: 10.1073/pnas.1209665109. Epub 2012 Jul 16. Proc Natl Acad Sci U S A. 2012. PMID: 22802655 Free PMC article.
References
-
- Hille B. Sinauer Associates, Inc.; Sunderland, MA: 2001. Ion Channels of Excitable Membranes.
-
- MacKinnon R., Aldrich R.W., Lee A.W. Functional stoichiometry of Shaker potassium channel inactivation. Science. 1993;262:757–759. - PubMed
-
- Jiang Y.X., Lee A., MacKinnon R. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423:33–41. - PubMed
-
- Bezanilla F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 2000;80:555–592. - PubMed
-
- Tombola F., Pathak M.M., Isacoff E.Y. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol. 2006;22:23–52. - PubMed