JAMIE: joint analysis of multiple ChIP-chip experiments
- PMID: 20551135
- PMCID: PMC2905557
- DOI: 10.1093/bioinformatics/btq314
JAMIE: joint analysis of multiple ChIP-chip experiments
Abstract
Motivation: Chromatin immunoprecipitation followed by genome tiling array hybridization (ChIP-chip) is a powerful approach to identify transcription factor binding sites (TFBSs) in target genomes. When multiple related ChIP-chip datasets are available, analyzing them jointly allows one to borrow information across datasets to improve peak detection. This is particularly useful for analyzing noisy datasets.
Results: We propose a hierarchical mixture model and develop an R package JAMIE to perform the joint analysis. The genome is assumed to consist of background and potential binding regions (PBRs). PBRs have context-dependent probabilities to become bona fide binding sites in individual datasets. This model captures the correlation among datasets, which provides basis for sharing information across experiments. Real data tests illustrate the advantage of JAMIE over a strategy that analyzes individual datasets separately.
Availability: JAMIE is freely available from http://www.biostat.jhsph.edu/~hji/jamie
Figures




Similar articles
-
JAMIE: A software tool for jointly analyzing multiple ChIP-chip experiments.Methods Mol Biol. 2012;802:363-75. doi: 10.1007/978-1-61779-400-1_24. Methods Mol Biol. 2012. PMID: 22130893
-
A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.Bioinformatics. 2005 Jun;21 Suppl 1:i274-82. doi: 10.1093/bioinformatics/bti1046. Bioinformatics. 2005. PMID: 15961467
-
rMAT--an R/Bioconductor package for analyzing ChIP-chip experiments.Bioinformatics. 2010 Mar 1;26(5):678-9. doi: 10.1093/bioinformatics/btq023. Epub 2010 Jan 19. Bioinformatics. 2010. PMID: 20089513
-
Modeling and analysis of ChIP-chip experiments.Methods Mol Biol. 2009;567:133-43. doi: 10.1007/978-1-60327-414-2_9. Methods Mol Biol. 2009. PMID: 19588090 Review.
-
Mapping the distribution of chromatin proteins by ChIP on chip.Methods Enzymol. 2006;410:316-41. doi: 10.1016/S0076-6879(06)10015-4. Methods Enzymol. 2006. PMID: 16938558 Review.
Cited by
-
Differential principal component analysis of ChIP-seq.Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6789-94. doi: 10.1073/pnas.1204398110. Epub 2013 Apr 8. Proc Natl Acad Sci U S A. 2013. PMID: 23569280 Free PMC article.
-
Sandcastle: software for revealing latent information in multiple experimental ChIP-chip datasets via a novel normalisation procedure.Sci Rep. 2015 Aug 26;5:13395. doi: 10.1038/srep13395. Sci Rep. 2015. PMID: 26307543 Free PMC article.
-
MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data.Genome Biol. 2011;12(2):R11. doi: 10.1186/gb-2011-12-2-r11. Epub 2011 Feb 1. Genome Biol. 2011. PMID: 21284836 Free PMC article.
-
A new approach for the joint analysis of multiple ChIP-seq libraries with application to histone modification.Stat Appl Genet Mol Biol. 2012 Feb 10;11(3):Article 1. doi: 10.1515/1544-6115.1660. Stat Appl Genet Mol Biol. 2012. PMID: 22499701 Free PMC article.
-
ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments.Bioinformatics. 2010 Oct 1;26(19):2438-44. doi: 10.1093/bioinformatics/btq466. Epub 2010 Aug 13. Bioinformatics. 2010. PMID: 20709693 Free PMC article.
References
-
- Bolstad BM, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–193. - PubMed
-
- Carroll JS, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43. - PubMed
-
- Cawley S, et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell. 2004;116:499–509. - PubMed