Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the Heart and Soul study
- PMID: 20551373
- PMCID: PMC3058601
- DOI: 10.1161/CIRCOUTCOMES.109.896159
Blood eicosapentaenoic and docosahexaenoic acids predict all-cause mortality in patients with stable coronary heart disease: the Heart and Soul study
Abstract
Background: Omega-3 fatty acid (n-3 FA) blood levels and intake have been inversely associated with risk for sudden cardiac death, but their relationship with all-cause mortality is unclear. The purpose of this study was to determine the extent to which baseline blood n-3 FA levels are associated with reduced risk for all-cause mortality in patients with stable coronary heart disease.
Methods and results: The Heart and Soul study used a prospective cohort design with a median follow-up of 5.9 years. Patients were recruited between 2000 and 2002 from 12 outpatient facilities in the San Francisco Bay Area. Standard cardiovascular risk factors, demographics, socioeconomic status, health behaviors, and inflammatory markers were collected at baseline. Fasting blood levels of eicosapentaenoic and docosahexaenoic acids were measured and expressed as a percent of total blood FAs. Vital status was assessed with annual telephone interviews and confirmed by review of death certificates. There were 237 deaths among 956 patients. Cox proportional hazards models were used to evaluate the extent to which blood eicosapentaenoic and docosahexaenoic acids were independently associated with all cause mortality. Compared with patients having baseline eicosapentaenoic and docosahexaenoic acids levels below the median (<3.6%), those at or above the median had a 27% decreased risk of death (hazard ratio, 0.73; 95% confidence interval, 0.56-0.94). This association was unaffected by adjustment for age, sex, ethnicity, center, socioeconomic status, traditional cardiovascular risk factors, and inflammatory markers (hazard ratio, 0.74; 95% confidence interval, 0.55-1.00, P<0.05).
Conclusions: In these outpatients with stable coronary heart disease, blood n-3 FA levels were inversely associated with total mortality independent of standard and emerging risk factors, suggesting that reduced tissue n-3 FA levels may adversely impact metabolism.
Conflict of interest statement
Figures
References
-
- Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, Jordan HS, Lau J. n-3 Fatty acids from fish or fish-oil supplements, but not {alpha}-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr. 2006;84:5–17. - PubMed
-
- Harris WS, Miller M, Tighe AP, Davidson MH, Schaefer EJ. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008;197:12–24. - PubMed
-
- Block RC, Harris WS, Reid KJ, Sands SA, Spertus JA. EPA and DHA in Blood Cell Membranes from Acute Coronary Syndrome Patients and Controls. Atherosclerosis. 2007;197:821–828. - PubMed
-
- Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH, Cobb LA, Copass MK, Psaty BM, Lemaitre R, Retzlaff B, Childs M, Knopp RH. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. J Am Med Assoc. 1995;274:1363–1367. - PubMed
-
- Harris WS, Poston WC, Haddock CK. Tissue n-3 and n-6 fatty acids and risk for coronary heart disease events. Atherosclerosis. 2007;193:1–10. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
